Skip to main content
Log in

Molecular characterization and expression analysis of heat shock proteins 40, 70 and 90 from kuruma shrimp Marsupenaeus japonicus

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Heat shock proteins (HSPs) are proteins that are expressed more strongly when the cells are exposed to physiological and stressful conditions. In this study, the full-length cDNAs of heat shock proteins 40 (MjHSP40), 70 (MjHSP70) and 90 (MjHSP90) were cloned from kuruma shrimp Marsupenaeus japonicus. The open reading frames (ORFs) of the cDNA clones have lengths of 1,191, 1,959 and 2,172 bp and encode 396, 652 and 723 amino acid residues, respectively. The predicted MjHSP40 amino acid sequence contains a J domain, a glycine/phenylalanine-rich region, and a central domain containing four repeats of a CxxCxGxG motif, indicating that it is a type I HSP40 homolog. The signature sequences of the HSP70 and HSP90 gene families are conserved in the MjHSP70 and MjHSP90 amino acid sequences. The deduced amino acid sequences of MjHSP70 and MjHSP90 share high identity with previously reported shrimp HSP70s and HSP90s, respectively. The expression of MjHSP90 mRNA increased at 32°C. Additionally, the expressions of MjHSP40, MjHSP70 and MjHSP90 mRNAs increased in defense-related tissues (i.e., hemocytes and lymphoid organ) when the shrimp were challenged with white spot syndrome virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  2. Nover L, Scharf KD (1997) Heat stress proteins and transcription factors. Cell Mol Life Sci 53:80–103

    Article  PubMed  CAS  Google Scholar 

  3. Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570

    Article  PubMed  CAS  Google Scholar 

  4. Cyr DM, Langer T, Douglas MG (1994) DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 19:176–181

    Article  PubMed  CAS  Google Scholar 

  5. Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  PubMed  CAS  Google Scholar 

  6. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  7. Hill RB, Flanagan JM, Prestegard JH (1995) 1H and 15 N magnetic resonance assignments, secondary structure, and tertiary fold of Escherichia coli DnaJ(1–78). Biochemistry 34:5587–5596

    Google Scholar 

  8. Qian YQ, Patel D, Hartl FU, McColl DJ (1996) Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain. J Mol Biol 260:224–235

    Article  PubMed  CAS  Google Scholar 

  9. Sahi C, Craig EA (2007) Network of general and specialty J protein chaperones of the yeast cytosol. Proc Natl Acad Sci USA 104:7163–7168

    Article  PubMed  CAS  Google Scholar 

  10. Jin Y, Awad W, Petrova K, Hendershot LM (2008) Regulated release of ERdj3 from unfolded proteins by BiP. EMBO J 27:2873–2882

    Article  PubMed  CAS  Google Scholar 

  11. Petrova K, Oyadomari S, Hendershot LM, Ron D (2008) Regulated association of misfolded endoplasmic reticulum lumenal proteins with P58/DNAJc3. EMBO J 27:2862–2872

    Article  PubMed  CAS  Google Scholar 

  12. Summers DW, Douglas PM, Ramos CH, Cyr DM (2009) Polypeptide transfer from Hsp40 to Hsp70 molecular chaperones. Trends Biochem Sci 34:230–233

    Article  PubMed  CAS  Google Scholar 

  13. Brychzy A, Rein T, Winklhofer KF, Hartl FU, Young JC, Obermann WM (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J 22:3613–3623

    Article  PubMed  CAS  Google Scholar 

  14. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  PubMed  CAS  Google Scholar 

  15. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  PubMed  CAS  Google Scholar 

  16. Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    PubMed  CAS  Google Scholar 

  17. Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201

    Article  PubMed  CAS  Google Scholar 

  18. Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 346:623–628

    Article  PubMed  CAS  Google Scholar 

  19. Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59:1640–1648

    Article  PubMed  CAS  Google Scholar 

  20. Buchner J (1999) Hsp90 & Co.—a holding for folding. Trends Biochem Sci 24:136–141

    Article  PubMed  CAS  Google Scholar 

  21. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133

    CAS  Google Scholar 

  22. Luan W, Li F, Zhang J, Wen R, Li Y, Xiang J (2010) Identification of a novel inducible cytosolic Hsp70 gene in Chinese shrimp Fenneropenaeus chinensis and comparison of its expression with the cognate Hsc70 under different stresses. Cell Stress Chaperones 5:83–93

    Article  Google Scholar 

  23. Cesar JR, Yang J (2007) Expression patterns of ubiquitin, heat shock protein 70, α-actin and β-actin over the molt cycle in the abdominal muscle of marine shrimp Litopenaeus vannamei. Mol Reprod Dev 74:554–559

    Article  PubMed  CAS  Google Scholar 

  24. Wu R, Sun L, Lei M, Xie ST (2008) Molecular identification and expression of heat shock cognate 70 (HSC70) in the Pacific white shrimp Litopenaeus vannamei. Mol Biol (Mosk) 42:265–274

    CAS  Google Scholar 

  25. Lo WY, Liu KF, Liao IC, Song YL (2004) Cloning and molecular characterization of heat shock cognate 70 from tiger shrimp (Penaeus monodon). Cell Stress Chaperones 9:332–343

    Article  PubMed  CAS  Google Scholar 

  26. Chuang KH, Ho SH, Song YL (2007) Cloning and expression analysis of heat shock cognate 70 gene promoter in tiger shrimp (Penaeus monodon). Gene 405:10–18

    Article  PubMed  CAS  Google Scholar 

  27. Li F, Luan W, Zhang C, Zhang J, Wang B, Xie Y, Li S, Xiang J (2009) Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress Chaperones 14:161–172

    Article  PubMed  CAS  Google Scholar 

  28. Jiang S, Qiu L, Zhou F, Huang J, Guo Y, Yang K (2009) Molecular cloning and expression analysis of a heat shock protein (Hsp90) gene from black tiger shrimp (Penaeus monodon). Mol Biol Rep 36:127–134

    Article  PubMed  CAS  Google Scholar 

  29. Wu LT, Chu KH (2008) Characterization of heat shock protein 90 in the shrimp Metapenaeus ensis: evidence for its role in the regulation of vitellogenin synthesis. Mol Reprod Dev 75:952–959

    Article  PubMed  CAS  Google Scholar 

  30. Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34:D257–D260

    Article  PubMed  CAS  Google Scholar 

  31. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  32. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{ - \rm\Updelta \rm\Updelta \it{C}_{{\text T}} }} \) method. Methods 25:402–408

  34. Lindenstrøm T, Secombes CJ, Buchmann K (2004) Expression of immune response genes in rainbow trout skin induced by Gyrodactylus derjavini infections. Vet Immunol Immunopathol 97:137–148

    Article  PubMed  Google Scholar 

  35. Abramoff MD, Magelhaes PJ, Ran SJ (2004) Image processing with ImageJ. Biophoto Int 11:36–42

    Google Scholar 

  36. Welch WJ (1993) How cells respond to stress. Sci Am 268:56–64

    Article  PubMed  CAS  Google Scholar 

  37. Chouchane L, Bowers S, Sawasdikosol S, Simpson RM, Kindt TJ (1994) Heat shock proteins expressed on the surface of human T cell leukemia virus type I-infected cell lines induce autoantibodies in rabbits. J Infect Dis 169:253–259

    Article  PubMed  CAS  Google Scholar 

  38. Lathangue NB, Latchman DS (1988) A cellular protein related to heat shock protein 90 accumulates during herpes-simplex-virus infection and is overexpressed in transformed cells. Exp Cell Res 178:169–179

    Article  CAS  Google Scholar 

  39. Donati YRA, Slosman DO, Polla BS (1990) Oxidative injury and the heat shock response. Biochem Pharmacol 40:2571–2577

    Article  PubMed  CAS  Google Scholar 

  40. Fincato G, Polentarutti N, Sica A, Mantovab A, Collotti F (1991) Expression of a heat inducible gene of the Hsp70 family in human myelomonocytic cells: regulation by bacterial products and cytokines. Blood 77:579–586

    PubMed  CAS  Google Scholar 

  41. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Develop 12:3788–3796

    Article  PubMed  CAS  Google Scholar 

  42. Parsell DA, Lindquist S (1993) The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Ann Rev Genetics 27:437–496

    Article  CAS  Google Scholar 

  43. Szyperski T, Pellecchia M, Wall D, Georgopoulos C, Wuthrich K (1994) NMR structure determination of the Escherichia coli DnaJ molecular chaperone: secondary structure and backbone fold of the N-terminal region (residues 2–108) containing the highly conserved J domain. Proc Natl Acad Sci USA 91:11343–11347

    Google Scholar 

  44. Corsi AK, Schekman R (1997) The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon in Saccharomyces cerevisiae. J Cell Biol 137:1483–1493

    Article  PubMed  CAS  Google Scholar 

  45. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791

    Article  PubMed  CAS  Google Scholar 

  46. Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40–Hsp70 interactions. Protein Sci 14:1697–1709

    Google Scholar 

  47. Rudiger S, Scneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ co-chaperones as a scanning factor for the DnaK chaperone. EMBO 20:1042–1050

    Article  CAS  Google Scholar 

  48. Fan C-Y, Lee S, Ren H-Y, Cyr DM (2004) Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol Biol Cell 15:761–773

    Article  PubMed  CAS  Google Scholar 

  49. Park K, Kwak IS (2008) Characterization of heat shock protein 40 and 90 in Chironomus riparinus larvae: effects of di(2-ethylhexayl) phthalate exposure on gene expression. Chemosphere 74:89–95

    Google Scholar 

  50. Liu J, Yang W-J, Zhu X-J, Karouna-Renier NK, Rao RK (2004) Molecular cloning and expression of HSP70 genes in the prawn, Macrobrachium rosenbergii. Cell Stress Chaperones 9:313–323

    Article  PubMed  CAS  Google Scholar 

  51. Wang B, Li F, Dong B, Zhang X, Xiang J (2006) Discovery of the genes in response to white spot syndrome virus (WSSV) infection in Fenneropenaeus chinensis through cDNA microarray. Mar Biotechnol (NY) 8:491–500

    Article  Google Scholar 

  52. Gross PS, Bartlett TC, Browdy CL, Chapman RW, Warr GW (2001) Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Dev Comp Immunol 25:565–577

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the Ministry of Agriculture, Forestry, and Fisheries of Japan and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the JSPS-NRCT Asian Core University program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Hirono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danwattananusorn, T., Fagutao, F.F., Shitara, A. et al. Molecular characterization and expression analysis of heat shock proteins 40, 70 and 90 from kuruma shrimp Marsupenaeus japonicus . Fish Sci 77, 929–937 (2011). https://doi.org/10.1007/s12562-011-0394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-011-0394-z

Keywords

Navigation