Skip to main content
Log in

Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Heat shock protein 90 (HSP90) works as a multi-functional chaperone and is involved in the regulation of many essential cellular pathways. In this study, we have identified a full-length complementary DNA (cDNA) of HSP90 (FcHSP90) from Chinese shrimp Fenneropenaeus chinensis. FcHSP90 full-length cDNA comprised 2,552 bp, including a 2,181-bp open reading frame encoding 726 amino acids. Both homology analyses using alignment with previously identified HSP90 and a phylogeny tree indicated that FcHSP90 was a cytoplasmic HSP90. Real-time reverse transcription polymerase chain reaction analysis revealed that FcHSP90 was ubiquitously expressed in all the examined tissues but with highest levels in ovary of F. chinensis. FcHSP90 mRNA levels were sensitively induced by heat shock (from 25°C to 35°C) and reached the maximum at 6 h during heat shock treatment. Under hypoxia conditions, FcHSP90 mRNA levels, in both hemocytes and gill, were induced at 2 h and depressed at 8 h during hypoxia stress. The assessment of FcHSP90 mRNA levels under heat shock and hypoxia stresses indicated that the transcription of FcHSP90 was very sensitive to heat shock and hypoxia, so we deduced that FcHSP90 might play very important roles for shrimp to cope with environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali A, Bharadwaj S, O’Carroll R, Ovsenek N (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–4960

    PubMed  CAS  Google Scholar 

  • Bachère E, Chagot D, Grizel H (1988) Separation of Crassostrea gigas hemocytes by density gradient centrifugation and counterflow centrifugal elutriation. Dev Comp Immunol 12:549–559 doi:10.1016/0145-305X(88)90071-7

    Article  PubMed  Google Scholar 

  • Bendena WG, Southgate AA, Garbe JC, Pardue ML (1991) Expression of heat shock locus hsr-omega in nonstressed cells during development in Drosophila melanogaster. Dev Biol 144:65–77 doi:10.1016/0012-1606(91)90479-M

    Article  PubMed  CAS  Google Scholar 

  • Brown MA, Zhu L, Schmidt C, Tucker PW (2007) Hsp90-From signal transduction to cell transformation. Biochem Biophys Res Commun 363:241–246 doi:10.1016/j.bbrc.2007.08.054

    Article  PubMed  CAS  Google Scholar 

  • Cellura C, Toubiana M, Parrinello N, Roch P (2006) HSP70 gene expression in Mytilus galloprovincialis hemocytes is triggered by moderate heat shock and Vibrio anguillarum, but not by V. splendidus or Micrococcus lysodeikticus. Dev Comp Immunol 30:984–997 doi:10.1016/j.dci.2005.12.009

    Article  PubMed  CAS  Google Scholar 

  • Currie S, Tufts B (1997) Synthesis of stress protein 70 (Hsp 70) in rainbow trout (Oncorhynchus mykiss) red blood cells. J Exp Biol 200:607–614

    PubMed  CAS  Google Scholar 

  • David E, Tanguy A, Pichavant K, Moraga D (2005) Response of the Pacific oyster Crassostrea gigas to hypoxia exposure under experimental conditions. FEBS J 272:5635–5652 doi:10.1111/j.1742-4658.2005.04960.x

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Kelly SP, Luk JCY, Woo NYS (2002) Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Mar Biotechnol 4:193–205

    PubMed  CAS  Google Scholar 

  • Farcy E, Serpentini A, Fiévet B, Lebel JM (2007) Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata: Transcriptional induction in response to thermal stress in hemocyte primary culture. Comp Biochem Physiol Part B 146:540–550 doi:10.1016/j.cbpb.2006.12.006

    Article  Google Scholar 

  • Fisher DL, Mandart E, Doree M (2000) Hsp90 is required for c-Mos activation and biphasic MAP kinase activation in Xenopus oocytes. EMBO J 19:1516–1524 doi:10.1093/emboj/19.7.1516

    Article  PubMed  CAS  Google Scholar 

  • Gao Q, Song LS, Ni DJ, Wu LT, Zhang H, Chang YQ (2007) cDNA cloning and mRNA expression of heat shock protein 90 gene in the haemocytes of Zhikong scallop Chlamys farreri. Comp Biochem Physiol Part B 147:704–715 doi:10.1016/j.cbpb.2007.04.010

    Article  Google Scholar 

  • Gupta RS (1995) Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12:1063–1073

    PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hart M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858 doi:10.1126/science.1068408

    Article  PubMed  CAS  Google Scholar 

  • Hur E, Kim HH, Choi SM et al (2002) Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1α/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor. Radicicol Mol Pharmacol 62:975–982 doi:10.1124/mol.62.5.975

    Article  CAS  Google Scholar 

  • Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 277:29936–29944 doi:10.1074/jbc.M204733200

    Article  PubMed  CAS  Google Scholar 

  • Isaacs JS, Jung YJ, Neckers L (2004) Aryl hydrocarbon nuclear translocator (ARNT) promotes oxygen-independent stabilization of hypoxia-inducible factor-1 by modulating an hsp90-dependent regulatory pathway. J Biol Chem 279:16128–16135 doi:10.1074/jbc.M313342200

    Article  PubMed  CAS  Google Scholar 

  • Jiao CZ, Wang ZZ, Li FH, Zhang CS, Xiang JH (2004) Cloning, sequencing and expression analysis of cDNA encoding a constitutive heat shock protein 70 (HSC70) in Fenneropenaeus chinensis. Chi Sci Bull 49:2385–2393 doi:10.1360/982004-120

    Article  CAS  Google Scholar 

  • Kültz D (1996) Plasticity and stressor specificity of osmotic and heat shock responses of Gillichthys mirabilis gill cells. Am J Physiol 271:C1181–C1193

    PubMed  Google Scholar 

  • Lang L, Miskovic D, Lo M, Heikkila JJ (2000) Stress-induced, tissue specific enrichment of hsp 70 mRNA accumulation in Xenopus laevis embryos. Cell Stress Chaperones 5:36–44 doi:10.1379/1466-1268(2000)005<0036:SITSEO>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Yang WJ, Zhu XJ, Karouna-Renier NK, Rao RK (2004) Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii. Cell Stress Chaperones 9:313–323 doi:10.1379/CSC-40R.1

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{ - \Delta \Delta {\text{CT}}} \) Method. Methods 25:402–408 doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  • Lo WY, Liu KF, Liao IC, Song YL (2004) Cloning and molecular characterization of heat shock cognate 70 from tiger shrimp (Penaeus monodon). Cell Stress Chaperones 9:332–343 doi:10.1379/CSC-47R.1

    Article  PubMed  CAS  Google Scholar 

  • Malago JJ, Koninkx JF, van Dijk JE (2002) The heat shock response and cytoprotection of the intestinal epithelium. Cell Stress Chaperones 7:191–199 doi:10.1379/1466-1268(2002)007<0191:THSRAC>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8:303–308 doi:10.1379/1466-1268(2003)008<0303:CALBTC>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Minami Y, Kawasaki H, Minami M, Tanahashi N, Tanaka K, Yahara I (2000) A critical role for the proteasome activator PA28 in the Hsp90-denpendent protein refolding. J Biol Chem 275:9055–9061 doi:10.1074/jbc.275.12.9055

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Biemar F, Müller F, Iyengar A, Prunet P, Maclean N, Martial JA, Muller M (2000) Cloning and expression analysis of an inducible HSP70 gene from tilapia fish. FEBS Letters 474:5–10 doi:10.1016/S0014-5793(00)01538-6

    Article  PubMed  CAS  Google Scholar 

  • Muller L, Schaupp A, Walerych D, Wegele H, Buchner J (2004) Hsp90 regulates the activity of wild type p53 under physiological and elevated temperatures. J Biol Chem 279:48846–48854 doi:10.1074/jbc.M407687200

    Article  PubMed  Google Scholar 

  • Myrmel T, McCully JD, Malkin L, Krukenkamp IB, Levitsky S (1994) Heat shock protein 70 mRNA is induced by anaerobic metabolism in rat hearts. Circulation 90:299–305

    Google Scholar 

  • Palmisano AN, Winton JR, Dickhoff WW (2000) Tissue-specific induction of Hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge. Mar Biotechnol 2:329–338

    PubMed  CAS  Google Scholar 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294 doi:10.1146/annurev.biochem.75.103004.142738

    Article  PubMed  CAS  Google Scholar 

  • Piano A, Franzellitti S, Tinti F, Fabbri E (2005) Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis. Gene 361:119–126 doi:10.1016/j.gene.2005.06.034

    Article  PubMed  CAS  Google Scholar 

  • Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59:1640–1648 doi:10.1007/PL00012491

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228:111–133

    CAS  Google Scholar 

  • Prodromou C, Roe SM, Piper PW, Pearl LH (1997) A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone. Nat Struct Biol 4:477–482 doi:10.1038/nsb0697-477

    Article  PubMed  CAS  Google Scholar 

  • Sanders BM, Martin LS, Nelson WG, Phelps DK, Welch W (1991) Relationship between accumulation of a 60 kDa stress protein and scope for growth in Mytilus edulis exposed to a range of copper concentrations. Mar Environ Res 31:81–97 doi:10.1016/0141-1136(91)90021-Y

    Article  CAS  Google Scholar 

  • Schill RO, Görlitz H, Köhler HR (2003) Laboratory simulation of a mining accident: acute toxicity, hsc/hsp70 response, and recovery from stress in Gammarus fossarum (Crustacea, Amphipoda) exposed to a pulse of cadmium. BioMetals 16:391–401 doi:10.1023/A:1022534326034

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger MJ (1990) Heat shock proteins: a mini review. J Biol Chem 265:12111–12114

    PubMed  CAS  Google Scholar 

  • Song LS, Wu LT, Ni DJ, Chang YQ, Xu W, Xing KZ (2006) The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacteria challenge and naphthalin stress. Fish Shellfish Immunol 21:335–345 doi:10.1016/j.fsi.2005.12.011

    Article  PubMed  CAS  Google Scholar 

  • Spees JL, Chang SA, Snyder MJ, Chang ES (2002) Thermal acclimation and stress in the American lobster, Homarus americanus: equivalent temperature shifts elicit unique gene expression patterns for molecular chaperones and polyubiquitin. Cell Stress Chaperones 7:97–106 doi:10.1379/1466-1268(2002)007<0097:TAASIT>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Terasawa K, Minami M, Minam Y (2005) Constantly updated knowledge of Hsp90. J Biochem 137:443–447 doi:10.1093/jb/mvi056

    Article  PubMed  CAS  Google Scholar 

  • Travers SA, Fares MA (2007) Functional coevolutionary networks of the Hsp70-Hop-Hsp90 system revealed through computational analyses. Mol Biol Evol 24:1032–1044 doi:10.1093/molbev/msm022

    Article  PubMed  CAS  Google Scholar 

  • Williams JH, Farag AM, Stansbury MA, Young PA, Bergman HL, Petersen NS (1996) Accumulation of HSP 70 in juvenile and adult rainbow trout gill exposed to metal-contaminated water and/or diet. Environ Toxicol Chem 15:1324–1328 doi:10.1897/1551-5028(1996)015<1324:AOHIJA>2.3.CO;2

    Article  CAS  Google Scholar 

  • Xiang JH (2002) Over 10, 000 expressed sequence tags from Fenneropenaeus chinensis. In: Abstract of International Aquaculture Conference and Exposition, Beijing, p 837

  • Yavelsky V, Vais O, Piura B, Wolfson M, Rabinovich A, Fraifeld V (2004) The role of Hsp90 in cell response to hyperthermia. J Therm Biol 29:509–514 doi:10.1016/j.jtherbio.2004.08.078

    Article  CAS  Google Scholar 

  • Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82:488–499

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High-Tech Research and Development Program of China (863 program) 2006AA09Z424 and 2006AA10A402, the Major State Basic Research Development Program of China (973 program) 2006CB101804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhai Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Luan, W., Zhang, C. et al. Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress and Chaperones 14, 161–172 (2009). https://doi.org/10.1007/s12192-008-0069-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0069-6

Keywords

Navigation