Skip to main content
Log in

Vibrational spectroscopic mapping and imaging of tissues and cells

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Vibrational spectroscopic mapping (point-by-point measurement) and imaging of biological samples (cells and tissues) covering Fourier-transform infrared (FTIR) and Raman spectroscopies has opened up many exciting new avenues to explore biochemical architecture and processes within healthy and diseased cells and tissues, including medical diagnostics and drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitken JB, Carter EA, Eastgate H, et al (2009) Biomedical applications of X-Ray absorption and vibrational spectroscopic microscopies in obtaining structural information from complex systems. Radiat Phys Chem (in press). doi:10.1016/jradphyschem.2009.03.068

  • Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930. doi:10.1039/b705967c

    Article  PubMed  CAS  Google Scholar 

  • Becker M, Sivakov V, Goesele U et al (2008) Nanowires enabling signal-enhanced nanoscale Raman spectroscopy. Small 4:398–404. doi:10.1002/smll.200701007

    Article  PubMed  CAS  Google Scholar 

  • Bernad S, Leygue N, Korri-Youssoufi H et al (2007) Kinetics of the electron transfer reaction of Cytochrome c552 adsorbed on biomimetic electrode studied by time-resolved surface-enhanced resonance Raman spectroscopy and electrochemistry. Eur Biophys J 36:1039–1048. doi:10.1007/s00249-007-0173-z

    Google Scholar 

  • Bhargava R (2007) Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology. Anal Bioanal Chem 389:1155–1169. doi:10.1007/s00216-007-1511-9

    Article  PubMed  CAS  Google Scholar 

  • Biju V, Pan D, Gorby YA et al (2007) Combined spectroscopic and topographic characterization of nanoscale domains and their distributions of a redox protein on bacterial cell surfaces. Langmuir 23:1333–1338. doi:10.1021/la061343z

    Article  PubMed  CAS  Google Scholar 

  • Boskey A, Mendelsohn R (2005) Infrared analysis of bone in health and disease. J Biomed Opt 10(9):031102

    Article  PubMed  Google Scholar 

  • Botvinick EL, Shah JV (2007) Laser-based measurements in cell biology. In: Botvinick EL, Shah JV (eds) Laser manipulation of cells and tissues, Elsevier, Amsterdam, pp 81–109

  • Burstein H, Polyak K, Wong J et al (2004) Medical progress: ductal carcinoma in-situ of the breast. N Engl J Med 350:1430–1441. doi:10.1056/NEJMra031301

    Article  PubMed  CAS  Google Scholar 

  • Carr GL, Hanfland M, Williams GP (1995) Midinfrared beamline at the national synchrotron light source port U2B. Rev Sci Instrum 66:1643–1645. doi:10.1063/1.1145870

    Article  CAS  Google Scholar 

  • Carter EA, Edward HGM (2001) Biological applications of Raman spectroscopy. In: Gremlich H-U, Yan B (eds) Infrared and Raman spectroscopy of biological materials. Marcel Dekker, New York, pp 421–475

    Google Scholar 

  • Chan J, Fore S, Wachsman-Hogiu S et al (2008) Raman spectroscopy and microscopy of individual cells and cellular components. Laser Photon Rev 2:325–349. doi:10.1002/lpor.200810012

    Article  Google Scholar 

  • Ci Y, Gao T, Feng J et al (1999) Fourier transform infrared spectroscopic characterization of human breast tissue: implications for breast cancer diagnosis. Appl Spectrosc 53:312–315. doi:10.1366/0003702991946703

    Article  CAS  Google Scholar 

  • Davies RJ, Burghammer M, Riekel C (2009) A combined microRaman and microdiffraction set-up at the European Synchrotron Radiation Facility ID13 beamline. J Synchrotron Radiat 16:22–29. doi:10.1107/s0909049508034663

    Article  PubMed  CAS  Google Scholar 

  • Djaker N, Gachet D, Sandeau N, Lenne P-F, Rigneault H (2007) Refractive effects in coherent anti-Stokes Raman scattering microscopy. Appl Optics 45:7005–7011

    Google Scholar 

  • Dukor R (2002) Vibrational spectroscopy in the detection of cancer. In: Chalmers J, Griffiths P (eds) Handbook of vibrational spectroscopy, 1st edn. John Wiley & Sons, Chichester, pp 3335–3361

    Google Scholar 

  • Eichert D, Gregoratti L, Kaulich B et al (2007) Imaging with spectroscopic micro-analysis using synchrotron radiation. Anal Bioanal Chem 389:1121–1132. doi:10.1007/s00216-007-1532-4

    Article  PubMed  CAS  Google Scholar 

  • Eronen P, Osterberg M, Jaaskelainen AS (2009) Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy. Cellulose 16:167–178. doi:10.1007/s10570-008-9259-8

    Article  CAS  Google Scholar 

  • Gachet D, Billard F, Rigneault H (2008) Focused field symmetries for background-free coherent anti-Stokes Raman spectroscopy. Phys Rev A 77:061801–061804. doi:10.1103/PhysRevA.77.061802

    Article  Google Scholar 

  • Gallet J, Riley M, Hao Z, Martin MC (2008) Increasing FTIR spectromicroscopy speed and resolution through compressive imaging. IR Physics Technol 51:420–422

    Google Scholar 

  • Geladi P (2003) Chemometrics in spectroscopy. Part 1. Classical chemometrics. Spectrochim Acta B 58:767–782. doi:10.1016/S0584-8547(03)00037-5

    Article  Google Scholar 

  • Geladi P, Sethson B, Nystrom J et al (2004) Chemometrics in spectroscopy. Part 2. Examples. Spectrochim Acta B 59:1347–1357. doi:10.1016/j.sab.2004.06.009

    Google Scholar 

  • Gierlinger N, Schwanninger M (2007) The potential of Raman microscopy and Raman imaging in plant research. Spectr-Int J 21:69–89

    CAS  Google Scholar 

  • Griffiths PR, de Haseth JA (2007) Fourier transform infrared spectrometry. Wiley, New York

    Book  Google Scholar 

  • Grude O, Hammiche A, Pollock H et al (2007) Near-field photothermal microspectroscopy for adult stem-cell identification and characterization. J Microsc-Oxf 228:366–372. doi:10.1111/j.1365-2818.2007.01853.x

    Article  CAS  Google Scholar 

  • Grude O, Nakamura T, Hammiche A et al (2009) Discrimination of human stem cells by photothermal microspectroscopy. Vib Spectrosc 49:22–27. doi:10.1016/j.vibspec.2008.04.008

    Article  CAS  Google Scholar 

  • Hammiche A, Pollock HM, Reading M et al (1999) Photothermal FT-IR spectroscopy: A step towards FT-IR microscopy at a resolution better than the diffraction limit. Appl Spectrosc 53:810–815. doi:10.1366/0003702991947379

    Article  CAS  Google Scholar 

  • Hammiche A, German MJ, Hewitt R et al (2005) Monitoring cell cycle distributions in MCF-7 cells using near-field photothermal microspectroscopy. Biophys J 88:3699–3706. doi:10.1529/biophysj.104.053926

    Article  PubMed  CAS  Google Scholar 

  • Hammiche A, Walsh MJ, Pollock HM et al (2007) Non-contact micro-cantilevers detect photothermally induced vibrations that can segregate different categories of exfoliative cervical cytology. J Biochem Biophys Methods 70:675–677. doi:10.1016/j.jbbm.2007.01.011

    Article  PubMed  CAS  Google Scholar 

  • Jackson M, Mantsch HH (2002) Pathology by infrared and Raman spectroscopy. In: Chalmers J, Griffiths P (eds) Handbook of vibrational spectroscopy. John Wiley & Sons, Chichester, pp 3227–3245

    Google Scholar 

  • Kazarian SG (2007) Enhancing high-throughput technology and microfluidics with FTIR spectroscopic imaging. Anal Bioanal Chem 388:529–532. doi:10.1007/s00216-007-1193-3

    Article  PubMed  CAS  Google Scholar 

  • Keren S, Zavaleta C, Cheng Z et al (2008) Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA 105:5844–5849. doi:10.1073/pnas.0710575105

    Article  PubMed  CAS  Google Scholar 

  • Lasch P, Naumann D (2006) Spatial resolution in infrared microspectroscopic imaging of tissues. Biochim Biophys Acta Biomembranes 1758:814–1729

    Google Scholar 

  • Leonard G, Swain S (2004) Ductal carcinoma in-situ, complexities and challenges. J Natl Cancer Inst 96:906–920

    Google Scholar 

  • Levin IW, Bhargava R (2005) Fourier transform infrared vibrational spectroscopic imaging: Integrating microscopy and molecular recognition. Annu Rev Phys Chem 56:429–474. doi:10.1146/annurev.physchem.56.092503.141205

    Article  PubMed  CAS  Google Scholar 

  • Martin MC, Tsvetkova NM, Crowe JH et al (2001) Negligible sample heating from synchrotron infrared beam. Appl Spectrosc 55:111–113. doi:10.1366/0003702011951551

    Article  CAS  Google Scholar 

  • McKee G (2002) Cytopathology of the breast. Oxford University Press, Boston

    Google Scholar 

  • Miller LM, Dumas P (2006) Chemical imaging of biological tissues with synchrotron infrared light. Biochim Biophys Acta 1758:846–857. doi:10.1016/j.bbamem.2006.04.010

    Article  PubMed  CAS  Google Scholar 

  • Miller LM, Wang Q, Smith RJ et al (2007) A new sample substrate for imaging and correlating organic and trace metal composition in biological cells and tissues. Anal Bioanal Chem 387:1705–1715. doi:10.1007/s00216-006-0879-2

    Article  PubMed  CAS  Google Scholar 

  • Moreira LM, Silveira L, Santos FV et al (2008) Raman spectroscopy: A powerful technique for biochemical analysis and diagnosis. Spectroscopy 22:1–19. doi:10.3233/spe-2008-0326

    CAS  Google Scholar 

  • Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541. doi:10.1080/05704920701551530

    Article  CAS  Google Scholar 

  • Nasse MJ, Reininger R, Kubala T et al (2007) Synchrotron infrared microspectroscopy imaging using a multi-element detector (IRMSI-MED) for diffraction-limited chemical imaging. Nucl Instr Methods A 582:107–110. doi:10.1016/j.nima.2007.08.073

    Article  CAS  Google Scholar 

  • Neugebauer U, Schmid U, Baumann K et al (2007) Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus epidermidis. ChemPhysChem 8:124–137. doi:10.1002/cphc.200600507

    Article  PubMed  CAS  Google Scholar 

  • Parker SF (1994) A review of the theory of Fourier-transform Raman-spectroscopy. Spectrochim Acta [A] 50:1841–1856. doi:10.1016/0584-8539(94)80197-5

    Google Scholar 

  • Petibois C, Guidi MC (2008) Bioimaging of cells and tissues using accelerator-based sources. Anal Bioanal Chem 391:1599–1608. doi:10.1007/s00216-008-2157-y

    Article  PubMed  CAS  Google Scholar 

  • Petter CH, Heigl N, Rainer M et al (2009) Development and application of Fourier-transform infrared chemical imaging of tumour in human tissue. Curr Med Chem 16:318–326

    Article  PubMed  CAS  Google Scholar 

  • Pollock H, Smith DA (2002) The use of near-field probes for vibrational spectroscopy and photothermal imaging. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. John Wiley & Sons, Chichester, pp 1472–1492

    Google Scholar 

  • Ricci C, Bloxham S, Kazarian SG (2007) ATR-FTIR imaging of albumen photographic prints. J Cult Herit 8:387–395. doi:10.1016/j.culher.2007.07.002

    Article  Google Scholar 

  • Schipper ML, Nakayama-Ratchford N, Davis CR et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3:216–221. doi:10.1038/nnano.2008.68

    Article  PubMed  CAS  Google Scholar 

  • Serge A, Bertaux N, Rigneault H, Marguet D (2007) Improved single molecule detection and tracing algorithms for the generation of a dynamic map of membrane diffusion in living cells. Biophys J Suppl S: 91A Supplement: Suppl. S

  • Skinner KA (2003) The clinical management of ductal carcinoma in-situ, lobular carcinoma in-situ and atypical hyperplasia of the breast. National Breast Cancer Centre, Sydney

    Google Scholar 

  • Smith WE (2008) Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 37:955–964. doi:10.1039/b708841h

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan G, Bhargava R (2007) Fourier transform-infrared spectroscopic imaging: The emerging evolution from a microscopy tool to a cancer imaging modality. Spectroscopy 22:30–43

    CAS  Google Scholar 

  • Stokes RJ, McKenzie F, McFarlane E et al (2009) Rapid cell mapping using nanoparticles and SERRS. Analyst (Lond) 134:170–175. doi:10.1039/b815117b

    Article  CAS  Google Scholar 

  • Swain RJ, Stevens MM (2007) Raman microspectroscopy for non-invasive biochemical analysis of single cells. Biochem Soc Trans 35:544–549. doi:10.1042/BST0350544

    Article  PubMed  CAS  Google Scholar 

  • Tam KK (2006) A non-destructive approach for breast cancer diagnosis and pathological strategy using infrared and Raman spectroscopy. PhD thesis. The University of Sydney, Sydney

  • Williams K, Bennett R, Brooker A et al (2003) New methods in Raman spectroscopy—combining other microscopes. Microsc Microanal 9:1094–1095

    Google Scholar 

  • Wood BR, Hammer L, Davis L, et al (2005) Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes. J Biomed Opt 10:014005. doi:10.1117/1.1854678

    Google Scholar 

Download references

Acknowledgments

The breast cancer research was supported by a grant from The University of Sydney, Cancer Research Fund, the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Major National Research Facilities Program for research conducted at NSSRC, and the Australian Synchrotron. The authors also thank Dr. Brian Reedy for the use of the FTIR imaging instrument at the University of Technology, Sydney. We are grateful to the ARC for funding of some of the research reported herein through RIEF and LIEF grants and ARC Discovery grants to PAL, including Australian Professorial Fellowships. We also thank Carolyn Mountford from the Institute for Magnetic Resonance Research, The University of Sydney, and Peter Russell from the Department of Anatomical Pathology, Royal Prince Alfred Hospital, for provision of the breast cancer samples used to obtain the spectra in Figs. 1, 2 and 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Lay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, E.A., Tam, K.K., Armstrong, R.S. et al. Vibrational spectroscopic mapping and imaging of tissues and cells. Biophys Rev 1, 95–103 (2009). https://doi.org/10.1007/s12551-009-0012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-009-0012-9

Keywords

Navigation