Skip to main content

Advertisement

Log in

Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fourier transform infrared (FTIR) chemical imaging is a strongly emerging technology that is being increasingly applied to examine tissues in a high-throughput manner. The resulting data quality and quantity have permitted several groups to provide evidence for applicability to cancer pathology. It is critical to understand, however, that an integrated approach with optimal data acquisition, classification, and validation is necessary to realize practical protocols that can be translated to the clinic. Here, we first review the development of technology relevant to clinical translation of FTIR imaging for cancer pathology. The role of each component in this approach is discussed separately by quantitative analysis of the effects of changing parameters on the classification results. We focus on the histology of prostate tissue to illustrate factors in developing a practical protocol for automated histopathology. Next, we demonstrate how these protocols can be used to analyze the effect of experimental parameters on prediction accuracy by analyzing the effects of varying spatial resolution, spectral resolution, and signal to noise ratio. Classification accuracy is shown to depend on the signal to noise ratio of recorded data, while depending only weakly on spectral resolution.

Correlation between conventionally stained and FTIR chemical images for pathology applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. There is no advantage to faster scanning once the modulation frequency has reached optimum level for MCT detectors (1 MHz). The reduced time to observe signal then decreases the SNR.

  2. It is noteworthy that we are examining trends in the absorbance spectra. Strictly, SNR should be measured in single beam spectra to relate rigorously to theory. It can be shown, however, that the trend will hold approximately for the absorbance spectra as well. Many practitioners advocate the use of rms SNR. We are employing peak-to-peak fluctuations over the same spectral range. Hence, the noise values we obtain will be higher but will follow the same trend.

References

  1. Woolf SH (1995) N Engl J Med 333:1401–1405

    Article  CAS  Google Scholar 

  2. Humphrey PA (2003) Prostate pathology. American Society for Clinical Pathology, Chicago

  3. Partin AW, Mangold LA, Lamm DM, Walsh PC, Epstein JI, Pearson JD (2001) Urology 58:843–848

    Article  CAS  Google Scholar 

  4. De La Taille A, Viellefond A, Berger N, Boucher E, De Fromont M, Fondimare A, Molinié V, Piron D, Sibony M, Staroz F, Triller M, Peltier E, Thiounn N, Rubin MA (2003) Hum Pathol 34:444–449

    Article  Google Scholar 

  5. Levin IW, Bhargava R (2005) Annu Rev Phys Chem 56:429–474

    Article  CAS  Google Scholar 

  6. Navratil M, Mabbott GA, Arriaga EA (2006) Anal Chem 78:4005–4019

    Article  CAS  Google Scholar 

  7. Caprioli RM, Farmer TB, Gile J (1997) Anal Chem 69:4751–4760

    Article  CAS  Google Scholar 

  8. Chaurand P, Schwartz SA, Billheimer D, Xu BGJ, Crecelius A, Caprioli RM (2004) Anal Chem 76:1145–1155

    Article  CAS  Google Scholar 

  9. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson S (1996) Radiology 198:795–805

    CAS  Google Scholar 

  10. Lewis EN, Gorbach AM, Marcott C, Levin IW (1996) Appl Spec 50:263–269

    Article  CAS  Google Scholar 

  11. Diem M, Romeo M, Boydston-White S, Miljkovic M, Matthaus C (2004) Analyst 129:880–885

    Article  CAS  Google Scholar 

  12. Mendelsohn R, Paschalis EP, Boskey AL (1999) J Biomed Opt 4:14–21

    Article  Google Scholar 

  13. Kidder LH, Kalasinsky VF, Luke JL, Levin IW, Lewis EN (1997) Nat Medicine 3:235–237

    Article  CAS  Google Scholar 

  14. Ellis DI, Goodacre R (2006) Analyst 131:875–885

    Article  CAS  Google Scholar 

  15. Bhargava R, Levin IW (eds) (2005) Spectrochemical analysis using infrared multichannel detectors. Blackwell, Oxford

  16. Petrich W (2001) Appl Spectrosc Rev 36(2):181–237

    Article  CAS  Google Scholar 

  17. Andrus PG (2006) Tech Cancer Res Treat 5:157–167

    CAS  Google Scholar 

  18. Krafft C, Sergo V (2006) Spectroscopy 20:195–218

    CAS  Google Scholar 

  19. Petibois C, Deleris G (2006) Trends Biotechnol 24:455–462

    Article  CAS  Google Scholar 

  20. Walsh MJ, German MJ, Singh M, Pollock HM, Hammiche A, Kyrgiou M, Stringfellow HF, Paraskevaidis E, Martin-Hirsh PL, Martin FL (2007) Cancer Lett 246:1–11

    Article  CAS  Google Scholar 

  21. Keith FN, Bhargava R (2007) Tech Cancer Res Treat (submitted)

  22. Gazi E, Dwyer J, Gardner P, Ghanbari-Siakhali A, Wade AP, Myan J, Lockyer NP, Vickerman JC, Clarke NW, Shanks JH, Hart C, Brown M (2003) J Pathology 201:99–108

    Article  CAS  Google Scholar 

  23. Gazi E, Baker M, Dwyer J, Lockyer NP, Gardner P, Shanks JH, Reeve RS, Hart C, Clarke NW, Brown M (2006) Eur Urol 50:750–761

    Article  Google Scholar 

  24. Harvey TJ, Henderson A, Gazi E, Clarke NW, Brown M, Faria EC, Snook RD, Gardner P (2007) Analyst 132:292–295

    Article  CAS  Google Scholar 

  25. Paluszkiewicz C, Kwiatek WM, Banas A, Kisiel A, Marcelli A, Piccinini A (2007) Vib Spectrosc 43:237–242

    Article  CAS  Google Scholar 

  26. Fernandez DC, Bhargava R, Hewitt SM, Levin IW (2005) Nat Biotechnol 23:469–474

    Article  CAS  Google Scholar 

  27. German MJ, Hammiche A, Ragavan N, Tobin MJ, Cooper LJ, Matanhelia SS, Hindley AC, Nicholson CM, Fullwood NJ, Pollock HM, Martin FL (2006) Biophys J 90:3783–3795

    Article  CAS  Google Scholar 

  28. Gazi E, Dwyer J, Lockyer NP, Miyan J, Gardner P, Hart CA, Brown MD, Clarke NW (2005) Vib Spectrosc 38:193–201

    Article  CAS  Google Scholar 

  29. Bhargava R, Hewitt SM, Levin IW (2007) Nat Biotechnol 25:31–33

    Article  CAS  Google Scholar 

  30. Srinivasan G, Bhargava R (2007) Spectroscopy 22:30–43

    CAS  Google Scholar 

  31. Bhargava R, Fernandez DC, Hewitt SM, Levin IW (2006) Biochim Biophys Acta Biomembr 1758:830–845

    Article  CAS  Google Scholar 

  32. Swets JA (1988) Science 240:1285–1293

    Article  CAS  Google Scholar 

  33. Lasch P, Naumann D (2006) Biochim Biophys Acta 1758:814–829

    Article  CAS  Google Scholar 

  34. Jackson M, Choo LP, Watson PH, Halliday WC, Mantsch HH (1995) Biochim Biophys Acta 1270:1–6

    Google Scholar 

  35. Sommer AJ, Katon JE (1991) Appl Spectrosc 45:1633–1640

    Article  CAS  Google Scholar 

  36. Carr GL (2001) Rev Sci Inst 72:1613–1619

    Article  CAS  Google Scholar 

  37. Bhargava R, Wang SQ, Koenig JL (1998) Appl Spectrosc 52:323–328

    Article  CAS  Google Scholar 

  38. Budevska BO (2000) Vib Spectrosc 24:37–45

    Article  CAS  Google Scholar 

  39. Romeo M, Diem M (2005) Vib Spectrosc 38:129–132

    Article  CAS  Google Scholar 

  40. Jackson M (2004) Faraday Discuss 126:1–18

    Article  CAS  Google Scholar 

  41. Norris KP (1954) J Sci Inst 31:284–287

    Article  Google Scholar 

  42. Rousch PB (ed) (1985) The design, sample handling, and applications of infrared microscopes. ASTM STP 949, American Society for Testing and Materials, Philadelphia

  43. Kwiatkoski JM, Reffner JA (1987) Nature 328:837–838

    Article  Google Scholar 

  44. Koenig JL (1999) Spectroscopy of polymers, 2nd edn. Elsevier, New York

    Google Scholar 

  45. Bartick EG, Tungol MW, Reffner JA (1994) Anal Chim Acta 288:35–42

    Article  CAS  Google Scholar 

  46. Wetzel DA, LeVine SM (1999) Science 285:1224–1225

    Article  CAS  Google Scholar 

  47. Gremlich H-U, Yan B (eds) (2000) Infrared and Raman spectroscopy of biological materials (practical spectroscopy). Marcel Dekker, New York

  48. Bhargava R, Wall BG, Koenig JL (2000) Appl Spectrosc 54:470–474

    Article  CAS  Google Scholar 

  49. Vobornik D, Margaritondo G, Sanghera JS, Thielen P, Aggarwal ID, Ivanov B, Miller JK, Haglund R, Tolk NH, Congiu-Castellano A, Rizzo MA, Piston DW, Somma F, Baldacchini G, Bonfigli F, Marolo T, Flora F, Montereali RM, Faenov A, Pikuz T, Longo G, Mussi V, Generosi R, Luce M, Perfetti P, Cricenti A (2004) Infrared Phys Tech 45:409–416

    Article  CAS  Google Scholar 

  50. Hirschfeld T (1979) Appl Spectrosc 33:525–527

    Article  CAS  Google Scholar 

  51. Wetzel DL (2002) Vib Spectrosc 29:183–189

    Article  CAS  Google Scholar 

  52. Carter MR, Bennett CL, Fields DJ, Hernandez J (1995) Proc SPIE 2480:380–386

    Article  Google Scholar 

  53. Lewis EN, Treado PJ, Reeder RC, Story GM, Dowrey AE, Marcott C, Levin IW (1995) Anal Chem 67:3377–3381

    Article  CAS  Google Scholar 

  54. Colarusso P, Kidder LH, Levin IW, Fraser JC, Arens JF, Lewis EN (1998) Appl Spectrosc 52:106A–120A

    Article  CAS  Google Scholar 

  55. Snively CM, Koenig JL (1999) Appl Spectrosc 53:170–177

    Article  CAS  Google Scholar 

  56. Bhargava R, Levin IW (2001) Anal Chem 73:5157–5167

    Article  CAS  Google Scholar 

  57. Ransohoff DF (2004) Nat Rev Cancer 4:309–314

    Article  CAS  Google Scholar 

  58. Bhargava R, Levin IW (eds) (2005) Spectrochemical analysis using infrared multichannel detectors. Blackwell , Oxford, pp 56–84

  59. Various contributors (2006) Biochim Biophys Acta Biomembr 1758

  60. Wood BR, Chiriboga L, Yee H, Quinn MA, McNaughton D, Diem M (2004) Gynecol Oncol 93:59–68

    Article  CAS  Google Scholar 

  61. Malins DC, Polissar NL, Nishikida K, Holmes EH, Gardner HS, Gunselman SJ (1995) Cancer 75:503–517

    Article  CAS  Google Scholar 

  62. Boydston-White S, Gopen T, Houser S, Bargonetti J, Diem M (1999) Biospectroscopy 5:219–227

    Article  CAS  Google Scholar 

  63. Shaw RA, Guijon FB, Paraskevas V, Ying SL, Mantsch HH (1999) Anal Quant Cytol 21:292–302

    CAS  Google Scholar 

  64. Mansfield JR, McIntosh LM, Crowson AN, Mantsch, HH, Jackson, M (1999) Appl Spectrosc 53:1323–1333

    Article  CAS  Google Scholar 

  65. McIntosh LM, Jackson M, Mantsch HH, Stranc MF, Pilavdzic D, Crowson AN (1999) J Invest Dermatol 112:951–956

    Article  CAS  Google Scholar 

  66. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Nat Med 4:844–847

    Article  CAS  Google Scholar 

  67. Camp RL, Charette LA, Rimm DL (2000) Lab Invest 80:1943–1949

    Article  CAS  Google Scholar 

  68. Paluszkiewicz C, Kwiatek WM, Banas A, Kisiel A, Marcelli A, Piccinini M (2007) Vib Spectrosc 43(1):237–242

    Article  CAS  Google Scholar 

  69. Benjamini Y, Hochberg Y (1995) J R Stat Soc Ser B 57:289–300

    Google Scholar 

  70. Pawitan Y, Michiels S, Koschielny S, Gusnanto A, Ploner A (2005) Bioinformatics 21:3017–3024

    Article  CAS  Google Scholar 

  71. Stone N, Kendall C, Smith J, Crow P, Barr H (2004) Faraday Diss 126:141–157

    Article  CAS  Google Scholar 

  72. Bhargava R, Wang SQ, Koenig JL (2000) Appl Spectrosc 54:486–495

    Article  CAS  Google Scholar 

  73. Bhargava R, Wang SQ, Koenig JL (2000) Appl Spectrosc 54:1690–1706

    Article  CAS  Google Scholar 

  74. Anderson RJ, Griffiths PR (1975) Anal Chem 47:2339–2347

    Article  CAS  Google Scholar 

  75. Llora X, Reddy RK, Bhargava R (in preparation)

Download references

Acknowledgement

The author would like to acknowledge collaborators over the years, especially Dr. Stephen M. Hewitt and Dr. Ira W. Levin of the National Institutes of Health, for numerous useful discussions and guidance. Discussions and help from Dr. Daniel Fernandez during the formative years of this work are also appreciated. Funding for this work was provided in part by University of Illinois Research Board and by the Department of Defense Prostate Cancer Research Program. This work was also funded in part by the National Center for Supercomputing Applications and the University of Illinois, under the auspices of the NCSA/UIUC faculty fellows program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Bhargava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhargava, R. Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology. Anal Bioanal Chem 389, 1155–1169 (2007). https://doi.org/10.1007/s00216-007-1511-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1511-9

Keywords

Navigation