Skip to main content
Log in

Bioimaging of cells and tissues using accelerator-based sources

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (< 1 μm) or tissue (<1 mm) analyses, (2) a temporal resolution to follow molecular dynamics, and (3) a sensitivity in the micromolar to nanomolar range, thus allowing true investigations on biological dynamics. Third-generation synchrotrons now offer the opportunity of bioanalytical measurements at nanometer resolutions with incredible sensitivity. Linear accelerators are more specialized in their physical features but may exceed synchrotron performances. All these techniques have become irreplaceable tools for developing knowledge in biology. This review highlights the pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kocsis M, Snigirev A (2004) Nucl Instrum Methods Phys A 525:79–84

    Article  CAS  Google Scholar 

  2. Mondelaers W, Cauwels P, Masschaele B, Dierick M, Lahorte P, Jolie J, Baechler S, Materna T (2000) XX international linac conference, Monterey, California THC 16:890–892

    Google Scholar 

  3. Incerti S, Zhang Q, Andersson F, Moretto P, Grime GW, Merchant MJ, Nguyen DT, Habchi C, Pouthier T, Seznec H (2007) Nucl Instrum Methods Phys B 260:20–27

    Article  CAS  Google Scholar 

  4. Gorelick S, Rahkila P, Sagari AR, Sajavaara T, Cheng S, Karlsson LB, van Kand JA, Whitlow HJ (2007) Nucl Instrum Methods Phys B 260:130–135

    Article  CAS  Google Scholar 

  5. Gilbert B, Margaritondo G, Mercanti D, Casalbore P, De Stasio G (2001) J Alloy Compd 328:8–13

    Article  CAS  Google Scholar 

  6. Fahrni CJ (2007) Curr Opin Chem Biol 11:121–127

    Article  CAS  Google Scholar 

  7. Petibois C, Gionnet K, Goncalves M, Perromat A, Moenner M, Déléris G (2006) Analyst 131:640–647

    Article  CAS  Google Scholar 

  8. Ortega R, Biston M-C, Devès G, Bohic S, Carmona A (2005) Nucl Instrum Methods Phys B 231:321–325

    Article  CAS  Google Scholar 

  9. Aburaya JH, Added N, Tabacniks MH, de Almeida Rizzutto M, Dupret M, Barbosa L (2006) Nucl Instrum Methods Phys B 249:792–795

    Article  CAS  Google Scholar 

  10. Rokita E, Chevallier P, Mutsaers PHA, Stopa M, Taton G, de Voigt MJA (2000) Nucl Instrum Methods Phys B 161–163:887–893

    Article  Google Scholar 

  11. Ortega R, Deves G, Moretto P (2001) Nucl Instrum Methods Phys B 181:475–479

    Article  CAS  Google Scholar 

  12. Minqin R, van Kan JA, Bettiol AA, Daina L, Gek CY, Huat BB, Whitlow HJ, Osipowicz T, Watt F (2007) Nucl Instrum Methods Phys B 260:124–129

    Article  CAS  Google Scholar 

  13. Aratono M, Kashimoto K, Matsuda T, Muroi S, Takata Y, Ikeda N, Takiue T, Tanida H, Watanabe I (2005) Langmuir 21:7398–7404

    Article  CAS  Google Scholar 

  14. Farquharson MJ, Geraki K, Falkenberg G, Leek R, Harris A (2007) Appl Radiat Isot 65:183–188

    Article  CAS  Google Scholar 

  15. Rao DV, Yuasa T, Akatsuka T, Tromba G, Hasan MZ, Takeda T, Devaraj B (2006) Rad Meas 41:177–182

    Article  CAS  Google Scholar 

  16. Ward NL, Haninec AL, Van Slyke P, Sled JG, Sturk C, Henkelman RM, Wanless IR, Dumont DJ (2004) Am J Pathol 165:889–899

    CAS  Google Scholar 

  17. Petibois C, Cazorla G, Cassaigne A, Deleris G (2001) Clin Chem 47:730–738

    CAS  Google Scholar 

  18. Petibois C, Drogat B, Bikfalvi A, Deleris G, Moenner M (2007) FEBS Lett 581:5469–5474

    CAS  Google Scholar 

  19. Petibois C, Gouspillou G, Wehbe K, Delage JP, Deleris G (2006) Anal Bioanal Chem 386:1961–1966

    Article  CAS  Google Scholar 

  20. Petibois C, Déléris G (2006) Trends Biotechnol 24:455–462

    Article  CAS  Google Scholar 

  21. Cestelli-Guidi M, Piccinini M, Marcelli A, Nucara A, Calvani P, Burattini E (2005) J Opt Soc Am 22:2810–2817

    Article  Google Scholar 

  22. Jamin N, Dumas P, Moncuit J, Fridman WH, Teillaud JL, Carr GL, Williams GP (1998) Proc Natl Acad Sci USA 95:4837–4840

    Article  CAS  Google Scholar 

  23. Burghardt AJ, Wang Y, Elalieh H, Thibault X, Bikle D, Peyrin F, Majumdar S (2007) Bone 40:160–168

    Article  CAS  Google Scholar 

  24. Miller LM, Tague TJ Jr (2002) Vibrational Spectrosc 28:159–165

    Article  CAS  Google Scholar 

  25. Brucherseifer M, Nagel M, Haring PB, Kurz H (2000) Appl Phys Lett 77:4049–4051

    Article  CAS  Google Scholar 

  26. Grosse E (2002) Phys Med Biol 47:3755–3760

    Article  Google Scholar 

  27. Edwards GS, Austin RH, Carroll FE, Copeland ML, Couprie ME, Gabella WE, Haglund RF, Hooper BA, Hutson MS, Jansen ED, Joos KM, Kiehart DP, Lindau I, Miao J, Pratisto HS, Shen JH, Tokutake Y, van der Meer AFG, Xie A (2003) Rev Sci Instrum 74:3207–3245

    Article  CAS  Google Scholar 

  28. Carroll FE, Mendenhall MH, Traeger RH, Brau C, Waters JW (2003) Am J Radiat 181:1197–1202

    Google Scholar 

  29. Wilmouth RC, Edman K, Neutze R, Wright PA, Clifton IJ, Schneider TR, Schofield CJ, Hajdu J (2001) Nat Struct Biol 8:689–694

    Article  CAS  Google Scholar 

  30. Hajdu J, Neutze R, Sjogren T, Edman K, Szoke A, Wilmouth RC, Wilmot CM (2000) Nat Struct Biol 7:1006–1012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Petibois.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petibois, C., Cestelli Guidi, M. Bioimaging of cells and tissues using accelerator-based sources. Anal Bioanal Chem 391, 1599–1608 (2008). https://doi.org/10.1007/s00216-008-2157-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2157-y

Keywords

Navigation