Skip to main content
Log in

Contribution of the endogeic earthworm species Aporrectodea caliginosa to the degradation of deoxynivalenol and Fusarium biomass in wheat straw

  • Original Paper
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

In arable fields managed by conservation tillage combined with crop residue mulching, plant pathogen repression is an important ecosystem service to prevent cultivated plants from fungal diseases and mycotoxin contamination. A laboratory microcosm study was conducted to investigate the contribution of the endogeic, geophagous earthworm species Aporrectodea caliginosa as a secondary decomposer to the reduction of the phytopathogenic fungus Fusarium culmorum and its mycotoxin deoxynivalenol (DON) in wheat straw residues. After 5 weeks experimental time, the Fusarium biomass and the DON concentration in aboveground straw were reduced considerably to the same extent both in presence and absence of A. caliginosa. Another substantial reduction of Fusarium biomass and DON concentration was found in belowground straw, which A. caliginosa had buried into the soil. Thus, we conclude that the particular contribution of secondary decomposers like A. caliginosa to the degradation of phytopathogenic fungi like Fusarium species and their mycotoxins like DON in the soil systems has to be assessed as minor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. doi:10.1128/CMR.16.3.497-516.2003

    Article  PubMed  CAS  Google Scholar 

  • Binet F, Fayolle L, Pussard M (1998) Significance of earthworms in stimulating soil microbial activity. Biol Fertil Soils 27:79–84

    Article  Google Scholar 

  • Bonkowski M, Griffiths BS, Ritz K (2000) Food preferences of earthworms for soil fungi. Pedobiologia 44:666–676

    Article  Google Scholar 

  • Bonkowski M, Scheu S, Schaefer M (1998) Interactions of earthworms (Octolasion lacteum), millipedes (Glomeris marginata) and plants (Hordelymus europaeus) in a beechwood on a basalt hill: implications for litter decomposition and soil formation. Appl Soil Ecol 9:161–166

    Article  Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231. doi:10.1007/BF02183068

    Article  CAS  Google Scholar 

  • Brown GG, Barois I, Lavelle P (2000) Regulations of organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–198

    Article  Google Scholar 

  • Buck C, Langmaack M, Schrader S (2000) Influence of mulch and soil compaction on earthworm cast properties. Appl Soil Ecol 14:223–229

    Article  Google Scholar 

  • Champeil A, Doré T, Fourbet JF (2004) Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci 166:1389–1415. doi:10.1016/j.plantsci.2004.02.004

    Article  CAS  Google Scholar 

  • Cook SMF, Linden DR (1996) Effect of food type and placement on earthworm (Aporrectodea tuberculata) burrowing and soil turnover. Biol Fertil Soils 21:201–206

    Article  Google Scholar 

  • Curry J, Schmidt O (2007) The feeding ecology of earthworms – a review. Pedobiologia 50:463–477

    Article  Google Scholar 

  • Curtui V, Brockmeyer A, Dietrich R, Kappenstein O, Klaffke H, Lepschy J, Märtlbauer E, Schneider E, Seidler C, Thielert G, Usleber E, Weber R, Wolff J (2005) Deoxynivalenol in Lebensmitteln. Mycotoxin Res 21:83–88

    Article  CAS  Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic-matter breakdown. Agric Ecosyst Environ 24:235–247. doi:10.1016/0167-8809(88)90069-2

    Article  Google Scholar 

  • Ernst G, Felten D, Vohland M, Emmerling C (2009) Impact of ecologically different earthworm species on soil water characteristics. Eur J Soil Biol 45:207–213

    Article  Google Scholar 

  • Felten D, Emmerling C (2009) Earthworm burrowing behavior in 2D terraria with single- and multi-species assemblages. Biol Fertil Soils 45:789–797

    Article  Google Scholar 

  • Flegel M, Schrader S (2000) Importance of food quality on selected enzyme activities in earthworm casts (Dendrobaena octaedra, Lumbricidae). Soil Biol Biochem 32:1191–1196

    Article  CAS  Google Scholar 

  • Fründ H-C, Butt K, Capowiez Y, Eisenhauer N, Emmerling C, Ernst G, Potthoff M, Schädler M, Schrader S (2010) Using earthworms as model organisms in the laboratory: recommendations for experimental implementations. Pedobiologia 53:119–125. doi:10.1016/j.pedobi.2009.07.002

    Article  Google Scholar 

  • Gómez-Brandón M, Lazcano C, Lores M, Domínguez J (2010) Detritivorous earthworms modify microbial community structure and accelerate plant residue decomposition. Appl Soil Ecol 44:237–244. doi:10.1016/j.apsoil.2009.12.010

    Article  Google Scholar 

  • Hobbs PR (2007) Conservation agriculture: what is it and why is it important for future sustainable food production? J Agric Sci 145:127–137

    Article  Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:1–25. doi:10.1016/j.agee.2003.12.018

    Article  Google Scholar 

  • Huhta V, Wright DH, Coleman DC (1989) Characteristics of defaunated soil. I. A comparison of three techniques applied to two different forest soils. Pedobiologia 33:417–426

    Google Scholar 

  • Kassam A, Friedrich T, Shaxson F, Pretty J (2009) The spread of conservation agriculture: justification, sustainability and uptake. Int J Agric Sustain 7:292–320. doi:10.3763/ijas.2009.0477

    Article  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371. doi:10.1016/j.soilbio.2010.04.003

    Article  CAS  Google Scholar 

  • Lowe CN, Butt KR (2005) Culture techniques for soil dwelling earthworms: a review. Pedobiologia 49:401–413. doi:10.1016/j.pedobi.2005.04.005

    Article  Google Scholar 

  • Lee KE (1985) Earthworms - their ecology and relationships with soils and land use. Academic, Sydney

    Google Scholar 

  • Moody SA, Briones TG, Dighton J (1995) Selective consumption of decomposing wheat straw by earthworms. Soil Biol Biochem 27:1209–1213. doi:10.1016/0038-0717(95),00024-9

    Article  CAS  Google Scholar 

  • Mudge AM, Dill-Macky R, Dong Y, Gardinera DM, Whitec RG, Manners JM (2006) A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum. Physiol Mol Plant Pathol 69:73–85. doi:10.1016/j.pmpp.2007.01.003

    Article  CAS  Google Scholar 

  • Oldenburg E, Brunotte J, Weinert J (2007) Strategies to reduce DON contamination of wheat with different soil tillage and variety systems. Mycotoxin Res 23:73–77

    Article  CAS  Google Scholar 

  • Oldenburg E, Kramer S, Schrader S, Weinert J (2008) Impact of the earthworm Lumbricus terrestris on the degradation of Fusarium-infected and deoxynivalenol-contaminated wheat straw. Soil Biol Biochem 40:3049–3053. doi:10.1016/j.soilbio.2008.09.004

    Article  CAS  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals – a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Pereyra SA, Dill-Macky R, Sims AL (2004) Survival and inoculum production of Gibberella zeae in wheat residue. Plant Dis 88:724–730. doi:10.1094/PDIS.2004.88.7.724

    Article  Google Scholar 

  • Pereyra SA, Dill-Macky R (2008) Colonization of the residues of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant Dis 92:800–807. doi:10.1094/PDIS-92-5-0800

    Article  Google Scholar 

  • Pestka JJ (2007) Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim Feed Sci Technol 137:283–298. doi:10.1016/j.anifeedsci.2007.06.006

    Article  CAS  Google Scholar 

  • Rotter BA, Preluisky DB, Pestka JJ (1996) Toxicology of deoxynivalenol (vomitoxin). J Toxicol Environ Health 48:1–34

    Article  PubMed  CAS  Google Scholar 

  • Sabatar-Vilar M, Malekinejad H, Selman MHJ, van der Doelen MAM, Fink-Gremmels J (2007) In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses. Mycopathologia 163:81–90. doi:10.1007/s11046-007-0093-6

    Article  Google Scholar 

  • Schrader S, Kramer S, Oldenburg E, Weinert J (2009) Uptake of deoxynivalenol by earthworms from Fusarium-infected wheat straw. Mycotoxin Res 25:53–58. doi:10.1007/s12550-009-0007-1

    Article  CAS  Google Scholar 

  • Stemann G, Lütke Entrup N (2005) Der Fusariumgefahr nach dem Maisanbau ackerbaulich begegnen- Förderung der Strohrotte ist zentrales Element. Mais 4:118–121

    Google Scholar 

  • Völkl A, Vogler B, Schollenberger M, Karlovsky P (2004) Microbial detoxification of mycotoxin deoxynivalenol. J Basic Microbiol 44:147–156. doi:10.1002/jobm.200310353

    Article  PubMed  Google Scholar 

  • Wagacha JM, Muthomi JW (2007) Fusarium culmorum: infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Prot 26:877–885. doi:10.1016/j.cropro.2006.09.003

    Article  CAS  Google Scholar 

  • Whalen JK, Parmelee RW (1999) Quantification of nitrogen assimilation efficiencies and their use to estimate organic matter consumption by the earthworms Aporrectodea tuberculata (Eisen) and Lumbricus terrestris L. Appl Soil Ecol 13:199–208

    Article  Google Scholar 

  • Zhang H, Schrader S (1993) Earthworm effects on selected physical and chemical properties of soil aggregates. Biol Fertil Soils 15:229–234

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Joachim Brunotte for providing the soil applied in the microcosms. The excellent technical assistance of Sabine El Sayed, Stefanie Schlißke and Bettina Schnauß is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friederike Wolfarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfarth, F., Schrader, S., Oldenburg, E. et al. Contribution of the endogeic earthworm species Aporrectodea caliginosa to the degradation of deoxynivalenol and Fusarium biomass in wheat straw. Mycotox Res 27, 215–220 (2011). https://doi.org/10.1007/s12550-011-0098-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-011-0098-3

Keywords

Navigation