Skip to main content
Log in

Uptake of deoxynivalenol by earthworms from Fusarium-infected wheat straw

  • Original Paper
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Conservation tillage combined with crop-residue mulching is increasingly important to meet soil protection targets. Concurrently, the health risk of soil-borne pathogenic fungi like Fusarium species, which produce deoxynivalenol (DON) as their major mycotoxin, is increasing. The detritivorous earthworm species Lumbricus terrestris takes part in the efficient degradation of Fusarium-infected and DON-contaminated wheat straw. Against this background, a laboratory study was conducted to quantify by means of ELISA technique the uptake of DON and its possible absorption and accumulation in tissue by L. terrestris in the short-term (5 weeks) and long-term (11 weeks). The DON concentrations in L. terrestris of the Fusarium-infected treatment were significantly different in the order of gut tissue > body wall > gut content at both dates with a decline in the long-term. The DON concentrations in the tissues decreased by an order of magnitude of weeks to months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bonkowski S, Griffiths BS, Ritz K (2000) Food preference of earthworms for soil fungi. Pedobiologia (Jena) 44:666–676. doi:10.1078/S0031-4056(04)70080-3

    Article  Google Scholar 

  • Bünemann EK, Schwenke GD, van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Aust J Soil Res 44:379–406. doi:10.1071/SR05125

    Article  Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231. doi:10.1007/BF02183068

    Article  CAS  Google Scholar 

  • Cote LM, Dahlem AM, Yoshizawa T, Swanson SP, Buck WB (1986) Excretion of deoxynivalenol and its metabolite in milk, urine, and faeces of lactating dairy cows. J Dairy Sci 69:2416–2423

    Article  PubMed  CAS  Google Scholar 

  • Curry JP, Schmidt O (2007) The feeding ecology of earthworms—a review. Pedobiologia (Jena) 50:463–477. doi:10.1016/j.pedobi.2006.09.001

    Article  CAS  Google Scholar 

  • Dänicke S, Valenta H, Döll S (2004) On the toxicokinetics and the metabolism of deoxynivalenol (DON) in the pig. Arch Anim Nutr 58:169–180. doi:10.1080/00039420410001667548

    Article  PubMed  CAS  Google Scholar 

  • Döll S, Dänicke S (2004) In vivo detoxification of Fusarium toxins. Arch Anim Nutr 58:419–441. doi:10.1080/00039420400020066

    Article  PubMed  CAS  Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic-matter breakdown. Agric Ecosyst Environ 24:235–247. doi:10.1016/0167-8809(88)90069-2

    Article  Google Scholar 

  • Flegel M, Schrader S (2000) Importance of food quality on selected enzyme activities in earthworm casts (Dendrobaena octaedra, Lumbricidae). Soil Biol Biochem 32:1191–1196. doi:10.1016/S0038-0717(00)00035-3

    Article  CAS  Google Scholar 

  • Heise J, Höltge S, Schrader S, Kreuzig R (2006) Chemical and biological characterization of non-extractable sulfonamide residues in soil. Chemosphere 65:2352–2357. doi:10.1016/j.chemosphere.2006.04.084

    Article  PubMed  CAS  Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:1–25. doi:10.1016/j.agee.2003.12.018

    Article  Google Scholar 

  • Huhta V, Wright DH, Coleman DC (1989) Characteristics of defaunated soil I. A comparison of three techniques applied to two different forest soils. Pedobiologia (Jena) 33:417–426

    Google Scholar 

  • IUSS Working Group WRB (2007) World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome

  • Langmaack M (1999) Earthworm communities in arable land influenced by tillage, compaction, and soil. Z Okologie Naturschutz 8:11–21

    Google Scholar 

  • Lee KE (1985) Earthworms—their ecology and relationships with soils and land use. Academic Press, Sydney

    Google Scholar 

  • Maraun M, Martens H, Migge S, Theenhaus A, Scheu S (2003) Adding to ‘the enigma of soil animal biodiversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39:85–95. doi:10.1016/S1164-5563(03)00006-2

    Article  Google Scholar 

  • Meier U (2001) Growth stages of mono- and dicotyledonous plants. BBCH Monograph, 2nd edn. Federal Biological Research Centre for Agriculture and Forestry, Braunschweig

    Google Scholar 

  • Moody SA, Briones MJI, Piearce TG, Dighton J (1995) Selective consumption of decomposing wheat straw by earthworms. Soil Biol Biochem 27:1209–1213. doi:10.1016/0038-0717(95)00024-9

    Article  CAS  Google Scholar 

  • Moody SA, Piearce TG, Dighton J (1996) Fate of some fungal spores associated with wheat straw decomposition on passage through the guts of Lumbricus terrestris and Aporrectodea longa. Soil Biol Biochem 28:533–537. doi:10.1016/0038-0717(95)00172-7

    Article  CAS  Google Scholar 

  • Nahmani J, Hodson ME, Black S (2007) A review of studies performed to assess metal uptake by earthworms. Environ Pollut 145:402–424. doi:10.1016/j.envpol.2006.04.009

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg E, Brunotte J, Weinert J (2007) Strategies to reduce DON contamination of wheat with different soil tillage and variety systems. Mycotoxin Res 23:73–77. doi:10.1007/BF02946029

    Article  CAS  Google Scholar 

  • Oldenburg E, Kramer S, Schrader S, Weinert J (2008) Impact of the earthworm Lumbricus terrestris on the degradation of Fusarium-infected and desoxynivalenol-contaminated wheat straw. Soil Biol Biochem 40:3049–3053. doi:10.1016/j.soilbio.2008.09.004

    Article  CAS  Google Scholar 

  • Pereyra SA, Dill-Macky R, Sims AL (2004) Survival and inoculum production of Gibberella zeae in wheat residue. Plant Dis 88:724–730. doi:10.1094/PDIS.2004.88.7.724

    Article  Google Scholar 

  • Pestka JJ (2007) Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim Feed Sci Technol 137:283–298. doi:10.1016/j.anifeedsci.2007.06.006

    Article  CAS  Google Scholar 

  • Prelusky DB, Trenholm HL, Lawrence GA, Scott PM (1984) Nontransmission of deoxynivalenol (vomitoxin) to milk following oral administration to dairy cows. J Environ Sci Health B 19:593–609. doi:10.1080/03601238409372453

    Article  PubMed  CAS  Google Scholar 

  • Sabater-Vilar M, Malekinejad H, Selman MHJ, van der Doelen MAM, Fink-Gremmels J (2007) In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicosis. Mycopathologia 163:81–90. doi:10.1007/s11046-007-0093-6

    Article  PubMed  CAS  Google Scholar 

  • Schrader S, Münchenberg T, Baumgarte S, Tebbe CC (2008) Earthworms of different functional groups affect the fate of the Bt-toxin Cry1Ab from transgenic maize in soil. Eur J Soil Biol 44:283–289. doi:10.1016/j.ejsobi.2008.04.003

    Article  CAS  Google Scholar 

  • Shuster WD, Edwards CA (2003) Interactions between tillage and earthworms in agroecosystems. In: El Titi A (ed) Soil tillage in agroecosystems. Advances in agroecology, vol 9. CRC Press, Boca Raton, pp 229–260

    Google Scholar 

  • Sims RW, Gerard BM (1985) Earthworms: keys and notes for the identification of the species. Synopses of the British Fauna. Backhuys, London, pp 171

  • Wagacha JM, Muthomi JW (2007) Fusarium culmorum: infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Prot 26:877–885. doi:10.1016/j.cropro.2006.09.003

    Article  CAS  Google Scholar 

  • Wang XB, Cai DX, Hoogmoed WB, Oenema O, Perdok UD (2006) Potential effect of conservation tillage on sustainable land use: a review of global long-term studies. Pedosphere 16:587–595. doi:10.1016/S1002-0160(06)60092-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Joachim Brunotte for helpful advice with the experimental conception of this study and for providing the soil applied in the microcosms. The excellent technical assistance of Sabine El Sayed, Stefanie Schlißke, Bettina Schnauß, Sabine Peickert and Petra Romanczuk-Schulz is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schrader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrader, S., Kramer, S., Oldenburg, E. et al. Uptake of deoxynivalenol by earthworms from Fusarium-infected wheat straw. Mycotox Res 25, 53–58 (2009). https://doi.org/10.1007/s12550-009-0007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-009-0007-1

Keywords

Navigation