Skip to main content
Log in

Inlet Hole Shape Analysis Depending on the Focus Conditions for Electron Beam Micro-hole Drilling

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Electron beam micro-drilling processes have some advantages, such as high aspect ratio of 3–10, and applicable usages of difficult-to-cut material. The process has always required some lensing system optimization with an electromagnetic system for a high-density electron beam profile. This paper suggests the inlet hole characteristics depending on the focus conditions with a 120 kV electron beam. Normally charged particles during the focusing process could be affected by circular and focusing motions in the magnetic force field. However, it always has space charging forces between each electron particle. Therefore, we could analyze the effect of the inlet hole shape depending on the focus conditions that have different space charging conditions, such as converging and diverging beam envelopes. This study analyzed the effects of the shape and size of the burr of drilled holes with respect to converging and diverging focus conditions. In addition, a Monte Carlo simulation was conducted to verify the effect of the focus condition on the scattering process. The experimental results show that converging electron beams are more effective on the reducing burr at the edge of the inlet hole. The simulation results suggest that the behavior of back scattered electrons can be altered under different focus conditions and that it can affect energy absorption by BSEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Marimuthu, S., Antar, M., & Dunleavey, J. (2019). Characteristics of micro-hole formation during fibre laser drilling of aerospace superalloy. Precision Engineering, 55, 339–348. https://doi.org/10.1016/j.precisioneng.2018.10.002

    Article  Google Scholar 

  2. Aamir, M., Giasin, K., Tolouei-Rad, M., & Vafadar, A. (2020). A review: Drilling performance and hole quality of aluminium alloys for aerospace applications. Journal of Materials Research and Technology, 9(6), 12484–12500. https://doi.org/10.1016/j.jmrt.2020.09.003

    Article  Google Scholar 

  3. Pan, H., Liu, Z., Qiu, M., Zhang, M., & Deng, C. (2021). Extreme wire electrical discharge machining based on semiconductor characteristics. The International Journal of Advanced Manufacturing Technology, 115(7), 2477–2489. https://doi.org/10.1007/s00170-021-07019-0

    Article  Google Scholar 

  4. McNally, C. A., Folkes, J., & Pashby, I. R. (2004). Laser drilling of cooling holes in aeroengines: State of the art and future challenges. Materials Science and Technology, 20(7), 805–813. https://doi.org/10.1179/026708304225017391

    Article  Google Scholar 

  5. Li, C., Zhang, B., Li, Y., Tong, H., Ding, S., Wang, Z., & Zhao, L. (2018). Self-adjusting EDM/ECM high speed drilling of film cooling holes. Journal of Materials Processing Technology, 262, 95–103. https://doi.org/10.1016/j.jmatprotec.2018.06.026

    Article  Google Scholar 

  6. Gautam, G. D., & Pandey, A. K. (2018). Pulsed Nd:YAG laser beam drilling: A review. Optics & Laser Technology, 100, 183–215. https://doi.org/10.1016/j.optlastec.2017.09.054

    Article  Google Scholar 

  7. Li, C., Xu, X., Li, Y., Tong, H., Ding, S., Kong, Q., Zhao, L., & Ding, J. (2019). Effects of dielectric fluids on surface integrity for the recast layer in high speed EDM drilling of nickel alloy. Journal of Alloys and Compounds, 783, 95–102. https://doi.org/10.1016/j.jallcom.2018.12.283

    Article  Google Scholar 

  8. Yazman, Ş, Köklü, U., Urtekin, L., Morkavuk, S., & Gemi, L. (2020). Experimental study on the effects of cold chamber die casting parameters on high-speed drilling machinability of casted AZ91 alloy. Journal of Manufacturing Processes, 57, 136–152. https://doi.org/10.1016/j.jmapro.2020.05.050

    Article  Google Scholar 

  9. Lee, H.-M., Choi, J.-H., & Moon, S.-J. (2020). Machining characteristics of glass substrates containing chemical components in femtosecond laser helical drilling. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(2), 375–385. https://doi.org/10.1007/s40684-020-00242-2

    Article  Google Scholar 

  10. Liu, Y., Geng, D., Shao, Z., Zhou, Z., Jiang, X., & Zhang, D. (2021). A study on strengthening and machining integrated ultrasonic peening drilling of Ti-6Al-4V. Materials & Design, 212, 110238. https://doi.org/10.1016/j.matdes.2021.110238

    Article  Google Scholar 

  11. Tao, S., Gao, Z., & Shi, H. (2021). Characterization of printed circuit board micro-holes drilling process by accurate analysis of drilling force signal. International Journal of Precision Engineering and Manufacturing, 23(2), 131–138. https://doi.org/10.1007/s12541-021-00603-0

    Article  Google Scholar 

  12. Kim, D., Kim, Y.-S., Song, K. Y., Ahn, S. H., & Chu, C. N. (2022). Kerosene supply effect on performance of aluminum nitride micro-electrical discharge machining. International Journal of Precision Engineering and Manufacturing, 23(6), 581–591. https://doi.org/10.1007/s12541-021-00568-0

    Article  Google Scholar 

  13. Nguyen, T.-T., Tran, V.-T., & Le, M.-T. (2022). Comprehensive optimization of the electrical discharge drilling in terms of energy efficiency and hole characteristics. International Journal of Precision Engineering and Manufacturing, 23(7), 807–824. https://doi.org/10.1007/s12541-022-00675-6

    Article  Google Scholar 

  14. Masuzawa, T. (2000). State of the art of micromachining. CIRP Annals, 49(2), 473–488. https://doi.org/10.1016/S0007-8506(07)63451-9

    Article  Google Scholar 

  15. Kelly Ferjutz, Joseph R. Davis, und Nikki D. Wheat (1994). Welding, Brazing, and Soldering. ASM Handbook, (Vol. 6, pp. 15–18). https://doi.org/10.31399/asm.hb.v06.9781627081733

  16. Kim, J., Lee, W. J., & Park, H. W. (2016). The state of the art in the electron beam manufacturing processes. International Journal of Precision Engineering and Manufacturing, 17(11), 1575–1585. https://doi.org/10.1007/s12541-016-0184-8

    Article  Google Scholar 

  17. Leitz, K.-H., Koch, H., Otto, A., Maaz, A., Löwer, T., & Schmidt, M. (2012). Numerical simulation of drilling with pulsed beams. Physics Procedia, 39, 881–892. https://doi.org/10.1016/j.phpro.2012.10.113

    Article  Google Scholar 

  18. Jung, S. T., Kang, E. G., Park, J. W., Kim, T. W., & Baek, S. Y. (2020). A study on proposal of e-beam drilling machining criterion by using on vaporized amplification sheets in a high-power density electron beam. Journal of Nanoscience and Nanotechnology, 20(7), 4231–4234. https://doi.org/10.1166/jnn.2020.17548

    Article  Google Scholar 

  19. Kim, H., Jung, S., Lee, J., & Baek, S. (2021). A study on multi-hole machining of high-power density electron beam using a vaporized amplification sheet. The International Journal of Advanced Manufacturing Technology, 115(5), 1411–1419. https://doi.org/10.1007/s00170-021-07046-x

    Article  Google Scholar 

  20. Huang, B., Chen, X., Pang, S., & Hu, R. (2017). A three-dimensional model of coupling dynamics of keyhole and weld pool during electron beam welding. International Journal of Heat and Mass Transfer, 115, 159–173. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.010

    Article  Google Scholar 

  21. Zhou, J., Tsai, H.-L., & Wang, P.-C. (2005). Transport phenomena and keyhole dynamics during pulsed laser welding. Journal of Heat Transfer, 128(7), 680–690. https://doi.org/10.1115/1.2194043

    Article  Google Scholar 

  22. Rai, R. R., Palmer, T., Elmer, J., & Debroy, T. (2009). Heat transfer and fluid flow during electron beam welding of 304L stainless steel alloy. Welding Journal (Miami, Fla), 88, 54s–61s.

    Google Scholar 

  23. Elena-Manuela, S., Păvălache, A., Gabriel, D., Dontu, O., Besnea, D., & Vasile, I. (2010). Mechanism of keyhole formation in laser welding. In Romanian Review Precision Mechanics, Optics and Mechatronics, 20, 171–176.

  24. Schwarz, H. (1964). Mechanism of high-power-density electron beam penetration in metal. Journal of Applied Physics, 35(7), 2020–2029. https://doi.org/10.1063/1.1702787

    Article  Google Scholar 

  25. Cline, H. E., & Anthony, T. R. (1977). Heat treating and melting material with a scanning laser or electron beam. Journal of Applied Physics, 48(9), 3895–3900. https://doi.org/10.1063/1.324261

    Article  Google Scholar 

  26. Yang, Z., & He, J. (2021). Numerical investigation on fluid transport phenomena in electron beam welding of aluminum alloy: Effect of the focus position and incident beam angle on the molten pool behavior. International Journal of Thermal Sciences, 164, 106914. https://doi.org/10.1016/j.ijthermalsci.2021.106914

    Article  Google Scholar 

  27. Haeff, A. V. (1939). Space-charge effects in electron beams. Proceedings of the IRE, 27(9), 586–602. https://doi.org/10.1109/JRPROC.1939.228758

    Article  Google Scholar 

  28. Lawson, J. D. (1954). Electron trajectories in strip beams constrained by a magnetic field. Proceedings of the IRE, 42(7), 1147–1151. https://doi.org/10.1109/JRPROC.1954.274548

    Article  Google Scholar 

  29. Shimizu, R., Kataoka, Y., Ikuta, T., Koshikawa, T., & Hashimoto, H. (1976). A Monte Carlo approach to the direct simulation of electron penetration in solids. Journal of Physics D: Applied Physics, 9(1), 101–113. https://doi.org/10.1088/0022-3727/9/1/017

    Article  Google Scholar 

  30. Shimizu, R., & Ze-Jun, D. (1992). Monte Carlo modelling of electron-solid interactions. Reports on Progress in Physics, 55(4), 487–531. https://doi.org/10.1088/0034-4885/55/4/002

    Article  Google Scholar 

  31. Kanaya, K., & Okayama, S. (1972). Penetration and energy-loss theory of electrons in solid targets. Journal of Physics D: Applied Physics, 5(1), 43–58. https://doi.org/10.1088/0022-3727/5/1/308

    Article  Google Scholar 

  32. Kanaya, K., & Ono, S. (1978). The energy dependence of a diffusion model of an electron probe into solid targets. Journal of Physics D: Applied Physics, 11(11), 1495–1498. https://doi.org/10.1088/0022-3727/11/11/008

    Article  Google Scholar 

  33. Klassen, A., Bauereiß, A., & Körner, C. (2014). Modelling of electron beam absorption in complex geometries. Journal of Physics D: Applied Physics, 47(6), 065307. https://doi.org/10.1088/0022-3727/47/6/065307

    Article  Google Scholar 

  34. Park, H., Kang, J. G., Kim, J. S., Kang, E. G., Choi, S.-K., Kim, J., & Park, H. W. (2022). Predictive modeling of microhole profile drilled using a focused electron beam with backing materials. International Journal of Thermal Sciences, 177, 107584. https://doi.org/10.1016/j.ijthermalsci.2022.107584

    Article  Google Scholar 

  35. Kim, J., Lee, W. J., & Park, H. W. (2018). Temperature predictive model of the large pulsed electron beam (LPEB) irradiation on engineering alloys. Applied Thermal Engineering, 128, 151–158. https://doi.org/10.1016/j.applthermaleng.2017.08.142

    Article  Google Scholar 

  36. Carriere, P. R., & Yue, S. (2017). Energy absorption during pulsed electron beam spot melting of 304 stainless steel: Monte-Carlo simulations and in-situ temperature measurements. Vacuum, 142, 114–122. https://doi.org/10.1016/j.vacuum.2017.04.039

    Article  Google Scholar 

  37. Demers, H., Poirier-Demers, N., Couture, A. R., Joly, D., Guilmain, M., de Jonge, N., & Drouin, D. (2011). Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. SCANNING: The Journal of Scanning Microscopies, 33, 135–146. https://doi.org/10.1002/sca.20262

Download references

Acknowledgements

This research was funded by Ministry of Trade, Industry and Energy Republic of Korea, Grant No. 20015739.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Goo Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, JG., Kim, Js., Min, BK. et al. Inlet Hole Shape Analysis Depending on the Focus Conditions for Electron Beam Micro-hole Drilling. Int. J. Precis. Eng. Manuf. 24, 1307–1317 (2023). https://doi.org/10.1007/s12541-023-00785-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-023-00785-9

Keywords

Navigation