Skip to main content
Log in

Fabrication of Short Circuit-Preventing Electrodes with a Self-assembled Monolayer on Flashlight-Sintered Porous Copper Nanofilms

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This study reports the fabrication of copper nanoparticles (CuNPs)-based superhydrophobic electrode using flashlight sintering. To fabricate superhydrophobic electrode, CuNPs with polyvinylpyrrolidone (PVP) of various concentrations was sintered by flashlight irradiations. After then, the self-assembled monolayers (SAM) were formed by vapor-deposition of 1-dodecanethiol (DDT) on the CuNPs film. During flashlight sintering, the surface roughness of CuNPs film could be controlled by changing the concentration PVP. The surface roughness was tended to increase with the decreasing concentration of PVP. As a result, the largest roughness of 7.28 μmRa was obtained with 0.01 g of PVP. Due to the unique characteristic of flashlight sintering, the highly porous and rough surface could be obtained with superior electric conductivity from CuNPs. The harmonic effects of secondary roughness and hydrophobic surface were achieved by the flashlight sintering process and SAM, respectively. These led to the successful fabrication of superhydrophobic copper tracks (contact angle: 169.08° ± 11.36, resistance: 0.13 ± 0.05 Ω/sq). By dropping the water droplet on the electrode, the performance of short-circuit for water prevention was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shaker, G., Safavi-Naeini, S., Sangary, N., & Tentzeris, M. M. (2011). Inkjet printing of ultrawideband (UWB) antennas on paper-based substrates. IEEE Antenna Wirel Propag Lett, 10, 111–114. https://doi.org/10.1109/lawp.2011.2106754

    Article  Google Scholar 

  2. Perelaer, J., Smith, P. J., Mager, D., Soltman, D., Volkman, S. K., Subramanian, V., et al. (2010). Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry, 20(39), 8446–8453. https://doi.org/10.1039/c0jm00264j

    Article  Google Scholar 

  3. Yu, J. H., Rho, Y., Kang, H., et al. (2015). Electrical behavior of laser-sintered Cu based metal-organic decomposition ink in air environment and application as current collectors in supercapacitor. Int J Pr Eng Manuf-Green Technol, 2(4), 333–337. https://doi.org/10.1007/s40684-015-0040-9

    Article  Google Scholar 

  4. Noguchi, Y., Sekitani, T., Yokota, T., & Someya, T. (2008). Direct inkjet printing of silver electrodes on organic semiconductors for thin-film transistors with top contact geometry. Applied Physics Letters, 93(4), 043303. https://doi.org/10.1063/1.2959728

    Article  Google Scholar 

  5. Kang, M., & Kang, K.-T. (2018). Flexible 2-layer paper printed circuit board fabricated by inkjet printing for 3-D origami electronics. Int J Pr Eng Manuf-Green Technol, 5(3), 421–426. https://doi.org/10.1007/s40684-018-0045-2

    Article  Google Scholar 

  6. Lee, J., Kim, H.-C., Choi, J.-W., & Lee, I. H. (2017). A review on 3D printed smart devices for 4D printing. Int J Pr Eng Manuf-Green Technol, 4(3), 373–383. https://doi.org/10.1007/s40684-017-0042-x

    Article  Google Scholar 

  7. Zhang, T., Wang, X., Li, T., Guo, Q., & Yang, J. (2013). Fabrication of flexible copper-based electronics with high-resolution and high-conductivity on paper via inkjet printing. J Mater Chem C, 2(2), 286–294. https://doi.org/10.1039/c3tc31740d

    Article  Google Scholar 

  8. Merilampi, S. L., Bjorninen, T., Vuorimaki, A., Ukkonen, L., Ruuskanen, P., & Sydanheimo, L. (2010). The effect of conductive ink layer thickness on the functioning of printed UHF RFID antennas. Proceedings of the IEEE, 98(9), 1610–1619. https://doi.org/10.1109/jproc.2010.2050570

    Article  Google Scholar 

  9. Narakathu, B. B., Avuthu, S. G. R., Eshkeiti, A., Emamian, S., & Atashbar, M. Z. (2015). Development of a microfluidic sensing platform by integrating PCB technology and inkjet printing process. IEEE Sensors Journal, 15(11), 6374–6380. https://doi.org/10.1109/jsen.2015.2457239

    Article  Google Scholar 

  10. Niittynen, J., Sowade, E., Kang, H., Baumann, R. R., & Mäntysalo, M. (2015). Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers. Sci Rep-Uk, 5(1), 8832. https://doi.org/10.1038/srep08832

    Article  Google Scholar 

  11. Li, D., Sutton, D., Burgess, A., Graham, D., & Calvert, P. D. (2009). Conductive copper and nickel lines via reactive inkjet printing. Journal of Materials Chemistry, 19(22), 3719–3724. https://doi.org/10.1039/b820459d

    Article  Google Scholar 

  12. Jang, S., Seo, Y., Choi, J., Kim, T., Cho, J., Kim, S., et al. (2010). Sintering of inkjet printed copper nanoparticles for flexible electronics. Scripta Materialia, 62(5), 258–261. https://doi.org/10.1016/j.scriptamat.2009.11.011

    Article  Google Scholar 

  13. Qi, L., Ma, J., & Shen, J. (1997). Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions. J Colloid Interf Sci, 186(2), 498–500. https://doi.org/10.1006/jcis.1996.4647

    Article  Google Scholar 

  14. Kamyshny, A. (2011). Metal-based inkjet inks for printed electronics. Open Appl Phys J, 4(1), 19–36. https://doi.org/10.2174/1874183501104010019

    Article  Google Scholar 

  15. Kang, J. S., Kim, H. S., Ryu, J., Hahn, H. T., Jang, S., & Joung, J. W. (2010). Inkjet printed electronics using copper nanoparticle ink. Journal of Materials Science: Materials in Electronics, 21(11), 1213–1220. https://doi.org/10.1007/s10854-009-0049-3

    Article  Google Scholar 

  16. Perelaer, J., Jani, R., Grouchko, M., Kamyshny, A., Magdassi, S., & Schubert, U. S. (2012). Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Advanced Materials, 24(29), 3993–3998. https://doi.org/10.1002/adma.201200899

    Article  Google Scholar 

  17. Park, S.-H., Chung, W.-H., & Kim, H.-S. (2014). Temperature changes of copper nanoparticle ink during flash light sintering. J Mater Process Tech, 214(11), 2730–2738. https://doi.org/10.1016/j.jmatprotec.2014.06.007

    Article  Google Scholar 

  18. Hwang, H.-J., Chung, W.-H., & Kim, H.-S. (2012). In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics. Nanotechnology, 23(48), 485205. https://doi.org/10.1088/0957-4484/23/48/485205

    Article  Google Scholar 

  19. Dugdale, I., & Cotton, J. B. (1963). An electrochemical investigation on the prevention of staining of copper by benzotriazole. Corrosion Science, 3(2), 69–74. https://doi.org/10.1016/s0010-938x(63)80001-3

    Article  Google Scholar 

  20. Chadwick, D., & Hashemi, T. (1979). Electron spectroscopy of corrosion inhibitors: Surface films formed by 2-mercaptobenzothiazole and 2-mercaptobenzimidazole on copper. Surface Science, 89(1–3), 649–659. https://doi.org/10.1016/0039-6028(79)90646-0

    Article  Google Scholar 

  21. Raut, N. C., & Al-Shamery, K. (2018). Inkjet printing metals on flexible materials for plastic and paper electronics. J Mater Chem C, 6(7), 1618–1641. https://doi.org/10.1039/c7tc04804a

    Article  Google Scholar 

  22. Määttänen, A., Ihalainen, P., Pulkkinen, P., Wang, S., Tenhu, H., & Peltonen, J. (2012). Inkjet-printed gold electrodes on paper: characterization and functionalization. Acs Appl Mater Inter, 4(2), 955–964. https://doi.org/10.1021/am201609w

    Article  Google Scholar 

  23. Quéré, D. (2008). Wetting and roughness. Annual Review of Materials Research, 38(1), 71–99. https://doi.org/10.1146/annurev.matsci.38.060407.132434

    Article  Google Scholar 

  24. Bai, J. G., Zhang, Z. Z., Calata, J. N., & Lu, G.-Q. (2006). Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Transactions on Components and Packaging Technologies, 29(3), 589–593. https://doi.org/10.1109/tcapt.2005.853167

    Article  Google Scholar 

  25. Nicula, R., Lüthen, F., Stir, M., Nebe, B., & Burkel, E. (2007). Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Biomolecular Engineering, 24(5), 564–567. https://doi.org/10.1016/j.bioeng.2007.08.008

    Article  Google Scholar 

  26. Yim, C., Sandwell, A., & Park, S. S. (2016). Hybrid copper-silver conductive tracks for enhanced oxidation resistance under flash light sintering. Acs Appl Mater Inter, 8(34), 22369–22373. https://doi.org/10.1021/acsami.6b07826

    Article  Google Scholar 

  27. Kim, Y.-J., Ryu, C.-H., Park, S.-H., & Kim, H.-S. (2014). The effect of poly (N-vinylpyrrolidone) molecular weight on flash light sintering of copper nanopaste. Thin Solid Films, 570, 114–122. https://doi.org/10.1016/j.tsf.2014.09.035

    Article  Google Scholar 

  28. López-Delgado, A., Cano, E., Bastidas, J. M., & López, F. A. (2001). A comparative study on copper corrosion originated by formic and acetic acid vapours. Journal of Materials Science, 36(21), 5203–5211. https://doi.org/10.1023/a:1012497912875

    Article  Google Scholar 

  29. Bastidas, D.-M., Iglesia, V. M. L., Cano, E., Fajardo, S., & Bastidas, J. M. (2008). Kinetic study of formate compounds developed on copper in the presence of formic acid vapor. Journal of the Electrochemical Society, 155(12), C578. https://doi.org/10.1149/1.2988059

    Article  Google Scholar 

  30. Rosen, Y., Marrach, R., Gutkin, V., & Magdassi, S. (2018). Thin copper flakes for conductive inks prepared by decomposition of copper formate and ultrafine wet milling. Adv Mater Technol, 4(1), 1800426. https://doi.org/10.1002/admt.201800426

    Article  Google Scholar 

  31. Rosen, Y. S., Yakushenko, A., Offenhäusser, A., & Magdassi, S. (2017). Self-reducing copper precursor inks and photonic additive yield conductive patterns under intense pulsed light. ACS Omega, 2(2), 573–581. https://doi.org/10.1021/acsomega.6b00478

    Article  Google Scholar 

  32. Woo, K., Kim, Y., Lee, B., Kim, J., & Moon, J. (2011). Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films. Acs Appl Mater Inter, 3(7), 2377–2382. https://doi.org/10.1021/am2002907

    Article  Google Scholar 

  33. Poirier, G. E., & Pylant, E. D. (1996). The self-assembly mechanism of alkanethiols on Au. Science, 272(5265), 1145–1148. https://doi.org/10.1126/science.272.5265.1145

    Article  Google Scholar 

  34. Lee, S. H., Lee, J. H., Park, C. W., et al. (2014). Continuous fabrication of bio-inspired water collecting surface via roll-type photolithography. Int J Pr Eng Manuf-Green Technol, 1(2), 119–124. https://doi.org/10.1007/s40684-014-0016-1

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Kyungpook National University Research Fund, 2020.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Changyong Yim or Jisoo Kim.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Additional file 1 Short circuit test (without DDT deposition)

Additional file 2 Short circuit test (with DDT deposition)

Additional file 3 Water droplet demonstration of Cu-P1 film without DDT deposition (tilted at 20°)

Additional file 4 Water droplet demonstration of Cu-P1 film with DDT deposition (tilted at 20°)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Yun, T.H., Yim, C. et al. Fabrication of Short Circuit-Preventing Electrodes with a Self-assembled Monolayer on Flashlight-Sintered Porous Copper Nanofilms. Int. J. Precis. Eng. Manuf. 24, 43–52 (2023). https://doi.org/10.1007/s12541-022-00728-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00728-w

Keywords

Navigation