Skip to main content
Log in

Design of High-Durability Superhydrophobic Microsurface Structures

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The development of industrial technology has increased the demand for surface modification to functionalize product surfaces. Superhydrophobicity affords a self-cleaning ability and is highly regarded in various industrial fields. However, superhydrophobic surfaces are limited in terms of their mechanical and chemical durability, which must be addressed to allow them to advance to the commercialization stage. In this study, we proposed a hierarchical structure to increase the durability of a microsurface exhibiting superhydrophobicity. It was optimized based on a design of experiments and finite element analysis. Results of the finite element analysis indicated that the maximum stress of the proposed hierarchical structure reduced by approximately 71% compared to that of the well-known pillar structure. The wettability and durability of the superhydrophobic film fabricated via micro three-dimensional printing and ultraviolet-imprint lithography were evaluated. The optimal hierarchical structure yielded a contact angle of 150° or more, and the change in the contact angle change was within 5° even after 10,000 cycles of the abrasion test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang, X., Guo, Y., Zhang, Z., & Zhang, P. (2013). Self-cleaning superhydrophobic surface based on titanium dioxide nanowires combined with polydimethylsiloxane. Applied Surface Science, 284, 319–323. https://doi.org/10.1016/j.apsusc.2013.07.100

    Article  Google Scholar 

  2. Qu, Z., Wang, F., Liu, P., Yu, Q., & Brouwers, H. (2020). Super-hydrophobic magnesium oxychloride cement (MOC): From structural control to self-cleaning property evaluation. Materials and Structures, 53(2), 1–10. https://doi.org/10.1617/s11527-020-01462-3

    Article  Google Scholar 

  3. Xu, M., Grabowski, A., Yu, N., Kerezyte, G., Lee, J.-W., & Pfeifer, B. R. (2020). Superhydrophobic drag reduction for turbulent flows in open water. Physical Review Applied, 13(3), 034056. https://doi.org/10.1103/PhysRevApplied.13.034056

    Article  Google Scholar 

  4. Dong, H., Cheng, M., Zhang, Y., Wei, H., & Shi, F. (2013). Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed. Journal of Materials Chemistry A, 1(19), 5886–5891. https://doi.org/10.1039/C3TA10225D

    Article  Google Scholar 

  5. Cao, L., Jones, A. K., Sikka, V. K., Wu, J., & Gao, D. (2009). Anti-icing superhydrophobic coatings. Langmuir, 25(21), 12444–12448. https://doi.org/10.1021/la902882b

    Article  Google Scholar 

  6. Barthwal, S., & Lim, S.-H. (2020). Robust and chemically stable superhydrophobic aluminum-alloy surface with enhanced corrosion-resistance properties. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2), 481–492. https://doi.org/10.1007/s40684-019-00031-6

    Article  Google Scholar 

  7. Leslie, D. C., Waterhouse, A., Berthet, J. B., Valentin, T. M., Watters, A. L., Jain, A., Kim, P., Hatton, B. D., Nedder, A., Donovan, K., Super, E. H., Howell, C., Johnson, C. P., Vu, T. L., Bolgen, D. E., Rifai, S., Hansen, A. R., Aizenberg, M., Super, M., … Ingber, D. E. (2014). A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nature biotechnology, 32(11), 1134–1140. https://doi.org/10.1038/nbt.3020

    Article  Google Scholar 

  8. Bartlet, K., Movafaghi, S., Dasi, L. P., Kota, A. K., & Popat, K. C. (2018). Antibacterial activity on superhydrophobic titania nanotube arrays. Colloids and Surfaces B: Biointerfaces, 166, 179–186. https://doi.org/10.1016/j.colsurfb.2018.03.019

    Article  Google Scholar 

  9. Zhang, P., & Lv, F. (2015). A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy, 82, 1068–1087. https://doi.org/10.1016/j.energy.2015.01.061

    Article  Google Scholar 

  10. Vazirinasab, E., Jafari, R., & Momen, G. (2018). Application of superhydrophobic coatings as a corrosion barrier: A review. Surface and Coatings Technology, 341, 40–56. https://doi.org/10.1016/j.surfcoat.2017.11.053

    Article  Google Scholar 

  11. Jeevahan, J., Chandrasekaran, M., Joseph, G. B., Durairaj, R., & Mageshwaran, G. (2018). Superhydrophobic surfaces: A review on fundamentals, applications, and challenges. Journal of Coatings Technology and Research, 15(2), 231–250. https://doi.org/10.1007/s11998-017-0011-x

    Article  Google Scholar 

  12. Ellinas, K., Tserepi, A., & Gogolides, E. (2017). Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review. Advances in Colloid and Interface Science, 250, 132–157. https://doi.org/10.1016/j.cis.2017.09.003

    Article  Google Scholar 

  13. Dalawai, S. P., Aly, M. A. S., Latthe, S. S., Xing, R., Sutar, R. S., Nagappan, S., Ha, C., Sadasivuni, K. K., & Liu, S. (2020). Recent advances in durability of superhydrophobic self-cleaning technology: A critical review. Progress in Organic Coatings, 138, 105381. https://doi.org/10.1016/j.porgcoat.2019.105381

    Article  Google Scholar 

  14. Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, Original Paper, 202(1), 1–8. https://doi.org/10.1007/s004250050096

    Article  Google Scholar 

  15. Cheng, Q., Li, M., Zheng, Y., Su, B., Wang, S., & Jiang, L. (2011). Janus interface materials: Superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter, 7(13), 5948–5951. https://doi.org/10.1039/C1SM05452J

    Article  Google Scholar 

  16. Bhushan, B., Jung, Y. C., & Koch, K. (2009). Micro-, nano-and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1894), 1631–1672. https://doi.org/10.1098/rsta.2009.0014

    Article  Google Scholar 

  17. Zhang, D., Williams, B. L., Shresth, S. B., Nasir, Z., Becher, E. M., Lofink, B. J., Santos, V. H., Patel, H., Peng, X., & Sun, L. (2017). Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques. Journal of Colloid and Interface Science, 505, 892–899. https://doi.org/10.1016/j.jcis.2017.06.087

    Article  Google Scholar 

  18. Ishizaki, T., Hieda, J., Saito, N., & Takai, O. (2010). Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition. Electrochimica Acta, 55(23), 7094–7101. https://doi.org/10.1016/j.electacta.2010.06.064

    Article  Google Scholar 

  19. Liu, Q., Chen, D., & Kang, Z. (2015). One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Applied Materials & Interfaces, 7(3), 1859–1867. https://doi.org/10.1021/am507586u

    Article  Google Scholar 

  20. Zhang, B., Li, Y., & Hou, B. (2015). One-step electrodeposition fabrication of a superhydrophobic surface on an aluminum substrate with enhanced self-cleaning and anticorrosion properties. RCS Advances, 5(121), 100000–100010. https://doi.org/10.1039/C5RA21525K

    Article  Google Scholar 

  21. Ryu, J., Kim, K., Park, J., Hwang, B., Ko, Y., Kim, H., Han, J., Seo, E., Park, Y., & Lee, S. (2017). Nearly perfect durable superhydrophobic surfaces fabricated by a simple one-step plasma treatment. Scientific Reports, 7(1), 1–8. https://doi.org/10.1038/s41598-017-02108-1

    Article  Google Scholar 

  22. Alameda, M. T., Osorio, M. R., Hernández, J. J., & Rodríguez, I. (2019). Multilevel hierarchical topographies by combined photolithography and nanoimprinting processes to create surfaces with controlled wetting. ACS Applied Nano Materials, 2(8), 4727–2733. https://doi.org/10.1021/acsanm.9b00338

    Article  Google Scholar 

  23. Yang, Z., Liu, X., & Tian, Y. (2020). Novel metal-organic super-hydrophobic surface fabricated by nanosecond laser irradiation in solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 587, 124343. https://doi.org/10.1016/j.colsurfa.2019.124343

    Article  Google Scholar 

  24. Martínez-Calderon, M., Rodríguez, A., Dias-Ponte, A., Morant-Miñana, M., Gómez-Aranzadi, M., & Olaizola, S. (2016). Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS. Applied Surface Science, 374, 81–89. https://doi.org/10.1016/j.apsusc.2015.09.261

    Article  Google Scholar 

  25. Susarrey-Arce, A., Marín, Á. G., Schlautmann, S., Lefferts, L., Gardeniers, J. G., & van Houselt, A. (2012). One-step sculpting of silicon microstructures from pillars to needles for water and oil repelling surfaces. Journal of Micromechanics and Microengineering, 23(2), 025004. https://doi.org/10.1088/0960-1317/23/2/025004

    Article  Google Scholar 

  26. Sun, T., Wang, G., Liu, H., Feng, L., Jiang, L., & Zhu, D. (2003). Control over the wettability of an aligned carbon nanotube film. Journal of the American Chemical Society, 125(49), 14996–14997. https://doi.org/10.1021/ja038026o

    Article  Google Scholar 

  27. Wang, T., Zhu, H., Zhang, Z., Gao, J., Wu, Y., Hu, M., & Xu, K. (2021). Preparing of superamphiphobic surface by fabricating hierarchical nano re-entrant pyramids on micro-cones using a combined laser-electrochemistry method. Surfaces and Interfaces, 24, 101112. https://doi.org/10.1016/j.surfin.2021.101112

    Article  Google Scholar 

  28. Kehagias, N., Francone, A., Guttmann, M., Winkler, F., Fernández, A., & Sotomayor Torres, C. M. (2018). Fabrication and replication of re-entrant structures by nanoimprint lithography methods. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 36(6), 06JF01. https://doi.org/10.1116/1.5048241

    Article  Google Scholar 

  29. Kodihalli Shivaprakash, N., Zhang, J., Panwar, A., Barry, C., Truong, Q., & Mead, J. (2019). Continuous manufacturing of reentrant structures via roll-to-roll process. Journal of Applied Polymer Science, 136(1), 46980. https://doi.org/10.1002/app.46980

    Article  Google Scholar 

  30. Lin, Y., Zhou, R., & Xu, J. (2018). Superhydrophobic surfaces based on fractal and hierarchical microstructures using two-photon polymerization: Toward flexible superhydrophobic films. Advanced Materials Interfaces, 5(21), 1801126. https://doi.org/10.1002/admi.201801126

    Article  Google Scholar 

  31. Dong, Z., Schumann, M. F., Hokkanen, M. J., Chang, B., Welle, A., Zhou, Q., Ras, R. H. A., Xu, Z., Wegener, M., & Levkin, P. A. (2018). Superoleophobic slippery Lubricant-Infused surfaces: Combining two extremes in the same surface. Advanced Materials, 30(45), 1803890. https://doi.org/10.1002/adma.201803890

    Article  Google Scholar 

  32. Darband, G. B., Aliofkhazraei, M., Khorsand, S., Sokhanvar, S., & Kaboli, A. (2020). Science and engineering of superhydrophobic surfaces: Review of corrosion resistance, chemical and mechanical stability. Arabian Journal of Chemistry, 13(1), 1763–1802. https://doi.org/10.1016/j.arabjc.2018.01.013

    Article  Google Scholar 

  33. Golovin, K., Boban, M., Mabry, J. M., & Tuteja, A. (2017). Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Applied Materials & Interfaces, 9(12), 11212–11223. https://doi.org/10.1021/acsami.6b15491

    Article  Google Scholar 

  34. Chen, X., Gong, Y., Li, D., & Li, H. (2016). Robust and easy-repairable superhydrophobic surfaces with multiple length-scale topography constructed by thermal spray route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492, 19–25. https://doi.org/10.1016/j.colsurfa.2015.12.017

    Article  Google Scholar 

  35. Xiu, Y., Liu, Y., Hess, D. W., & Wong, C. (2010). Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology, 21(15), 155705. https://doi.org/10.1088/0957-4484/21/15/155705

    Article  Google Scholar 

  36. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), 988–994. https://doi.org/10.1021/ie50320a024

    Article  Google Scholar 

  37. Cassie, A., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday society, 40, 546–551. https://doi.org/10.1039/TF9444000546

    Article  Google Scholar 

  38. Peters, R. M., Hackeman, E., & Goldreich, D. (2009). Diminutive digits discern delicate details: Fingertip size and the sex difference in tactile spatial acuity. Journal of Neuroscience, 29(50), 15756–15761. https://doi.org/10.1523/JNEUROSCI.3684-09.2009

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Trade, Industry, and Energy (MOTIE, Korea) under the Industrial Technology Innovation Program (No. 20000665). The authors would like to thank Editage (www.editage.co.kr) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongho Jeon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Jang, G., Kim, G.E. et al. Design of High-Durability Superhydrophobic Microsurface Structures. Int. J. Precis. Eng. Manuf. 23, 929–942 (2022). https://doi.org/10.1007/s12541-022-00661-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00661-y

Keywords

Navigation