Skip to main content

Advertisement

Log in

Fabrication and Processing of Bioabsorbable Hybrid Zn/(Ag + Fe + Mg)-MMC on Developed Ultrasonic Vibration-Assisted Argon Atmosphere Stir Casting Set-up

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Pure zinc has excellent biocompatibility and acceptable bio-degradation rate. But it has low mechanical strength and becomes brittle at elevated temperature. This problem can be eliminated with zinc base metal matrix composites. Keeping in view, this paper presents the fabrication process of bioabsorbable hybrid Zn/(Ag + Fe + Mg) metal matrix composite (MMC). The ultrasonic vibration-assisted stir casting technique with argon atmosphere was used to fabricate the bioabsorbable hybrid Zn/(Ag + Fe + Mg) MMC. An ultrasonic vibration-assisted stir casting set-up has been developed and utilized for the purpose. Mechanical property testing on fabricated composite specimens was carried out, and the effects of particulate reinforcement on mechanical properties were investigated. The mechanical properties of fabricated stir cast composite were modified and improved by hot-rolling and solution heat-treatment processes. From test results, it is found that the ultimate tensile strength (UTS) of the cast hot-rolled composite was 361.88 MPa, and hot-rolled with solution heat-treated composite was 284.31 MPa, whereas cast zinc was only 33.6 MPa. Hence, test results reveal the significant improvement in the UTS of the fabricated hybrid cast Zn/(Ag + Fe + Mg) MMC over cast Zn matrix. The hot-rolled and solution heat-treated hybrid Zn/(Ag + Fe + Mg) MMC may be used as an alternative material for fabrication of bioabsorbable medical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tenekecioglu, E.; Vasim, F.; Bourantas, C.V.; Silva, R.C.; Onuma, Y.; Yılmaz, M.; Serruys, P.W.: Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention. BMC Cardiovasc. Disord. 16, 38 (2016)

    Article  Google Scholar 

  2. Witte, F.: The history of biodegradable magnesium implants: A review. Acta Biomater. 6(5), 1680–1692 (2010)

    Article  Google Scholar 

  3. Stulikova, I.; Smola, B.; Hnilica, F.; Březina, V.; Joska, L.: Degradable Mg-Y-Nd-Mn alloys modified by Sc or Zn. Kovove Mater. 50, 351–356 (2012)

    Article  Google Scholar 

  4. Kubasek, J.; Vojtěch, D.; Pospíšilová, I.: Structural and corrosion characterization of biodegradable Mg-Zn alloy castings. Kovove Mater. 50(6), 415–424 (2012)

    Google Scholar 

  5. Moravej, M.; Prima, F.; Fiset, M.; Mantovani, D.: Electroformed iron as new biomaterial for degradable stents: Development process and structure-properties relationship. Acta Biomater. 6(5), 1726–1735 (2010)

    Article  Google Scholar 

  6. Liu, R.Y.; He, R.G.; Xu, L.Q.; Guo, S.F.: Design of Fe–Mn–Ag alloys as potential candidates for biodegradable metals. Acta Metall. Sin. (Engl. Lett.) 31(6), 584–590 (2018)

    Article  Google Scholar 

  7. Im, S.H.; Jung, Y.; Kim, S.H.: Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater. 60, 3–22 (2017)

    Article  Google Scholar 

  8. Ang, H.Y.; Huang, Y.Y.; Lim, S.T.; Wong, P.; Joner, M.; Foin, N.: Mechanical behavior of polymer-based vs. metallic-based bioresorbable stents. J. Thorac. Dis. 9(Suppl 9), S923–S934 (2017)

    Article  Google Scholar 

  9. Sotoudehbagha, P.; Sheibani, S.; Khakbiz, M.; Ebrahimi-Barough, S.; Hermawan, H.: Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying. Mater. Sci. Eng. C 88, 88–94 (2018)

    Article  Google Scholar 

  10. Bowen, P.K.; Drelich, J.; Goldman, J.: Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv. Mater. 25, 2577–2582 (2013)

    Article  Google Scholar 

  11. Bowen, P.K.; Guillory, R.J., II.; Shearier, E.R.; Seitz, J.M.; Drelich, J.; Bocks, M.; Zhao, F.; Goldman, J.: Metallic zinc exhibits optimal biocompatibility for bioabsorbable Endovascular stents. Mater. Sci. Eng. C 56, 467–472 (2015)

    Article  Google Scholar 

  12. Li, P.; Schille, C.; Schweizer, E.; Rupp, F.; Heiss, A.; Legner, C.; Klotz, U.E.; Geis-Gerstorfer, J.; Scheideler, L.: Mechanical characteristics, in vitro degradation, cytotoxicity, and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material. Int. J. Mol. Sci. 19, 755 (2018)

    Article  Google Scholar 

  13. Jialin, N.; Tang, Z.; Huang, H.; Pei, J.; Zhang, H.; Yuan, G.; Ding, W.: Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application. Mater. Sci. Eng. C 69, 407–413 (2016)

    Article  Google Scholar 

  14. Mostaed, E.; Sikora-Jasinska, M.; Mostaed, A.; Loffredo, S.; Demir, A.G.; Previtali, B.; Mantovani, D.; Beanland, R.; Vedani, M.: Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation. J. Mech. Behav. Biomater. 60, 581–602 (2016)

    Article  Google Scholar 

  15. Bowen, P.K.; Seitz, J.-M.; Guillory, R.J.; Braykovich, J.P.; Zhao, S.; Goldman, J.; Drelich, J.W.: Evaluation of wrought Zn–Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications. J. Biomed. Mater. Res. Part B 106B, 245–258 (2018)

    Article  Google Scholar 

  16. Zhao, S.; Seitz, J.M.; Eifler, R.; Maier, H.J.; Guillory, R.J., II.; Earley, E.J.; Drelich, A.; Goldman, J.; Drelich, J.W.: Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat. Mater. Sci. Eng. C 76, 301–312 (2017)

    Article  Google Scholar 

  17. Li, H.; Hongtao, Y.; Yufeng, Z.; Feiyu, Z.; Kejin, Q.; Xiang, W.: Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrientalloying elements Mg, Ca and Sr. Mater. Des. 83, 95–102 (2015)

    Article  Google Scholar 

  18. Hira, J.; Mangal, S.K.; Manna, A.: Fabrication of hybrid Mg/(Al2O3p + SiCp + Grp) metal matrix composite on developed gas injection liquid stir casting setup. Arab. J. Sci. Eng. 40, 2729–2738 (2015)

    Article  Google Scholar 

  19. Mostaed, E.; Sikora-Jasinska, M.; Drelich, J.W.; Vedani, M.: Zinc-based alloys for degradable vascular stent applications. Acta Biomater. 71, 1–23 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Mohan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, P., Manna, A. Fabrication and Processing of Bioabsorbable Hybrid Zn/(Ag + Fe + Mg)-MMC on Developed Ultrasonic Vibration-Assisted Argon Atmosphere Stir Casting Set-up. Arab J Sci Eng 47, 8361–8372 (2022). https://doi.org/10.1007/s13369-021-06205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06205-2

Keywords

Navigation