Skip to main content

Advertisement

Log in

Age-Induced Precipitating and Strengthening Behaviors in a Cu–Ni–Al Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural response and variations in strength and electrical conductivity of a Cu−20 at. pct Ni–6.7 at. pct Al alloy during isothermal aging at temperatures from 723 K to 1023 K (450 °C to 750 °C) were investigated to discuss the age-induced precipitation behavior and strengthening mechanism. At all aging temperatures, fine spherical γ′-Ni3Al particles were found to nucleate coherently with parent Cu grains by continuous precipitation and then grew gradually by Ostwald ripening. Domains with a high density of twins developed at grain boundaries during aging below 873 K (600 °C) followed by cellular components composed of fiber-shaped γ′-Ni3Al and Cu solid solution phases at the domain boundaries later. Both the domains and cellular components were suppressed at aging above 923 K (650 °C). The age-induced strengthening principally resulted from fine dispersion of γ′-Ni3Al coherent particles in the grains. The precipitation strengthening by the fine γ′-Ni3Al coherent particles exhibited a maximum at an aging temperature of 873 K (600 °C), resulting in excellent mechanical properties such as a high hardness of 340 ± 7 HV and an ultimate tensile strength of 980 ± 14 MPa, which are comparable to those of other commercial age-hardened Cu–Be, Cu–Ni–Si, and Cu–Ti alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from domains along a grain boundary. The incident beam direction was 1_10α and 1_10γ. The DF image of (c) was taken from a 110γ superlattice reflection as marked by the solid circle in the SAED pattern in (b). White arrows in (c) indicate twin boundaries

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Electrical conductivity unit corresponding to the conductivity of annealed Cu measured at 298 K (25 °C), (5.8 × 107 Ω-1 m-1).

References

  1. R. Monzen, T. Hasegawa, and C. Watanabe: Philos. Mag., 2010, vol. 90, pp. 1347–58. .

    Article  CAS  Google Scholar 

  2. X. Guoliang, W. Qiangsong, M. Xujun, X. Baiqing, and P. Lijun: Mater. Sci. Eng. A., 2012, vol. 558, pp. 326–30. .

    Article  Google Scholar 

  3. T. Hu, J.H. Chen, J.Z. Liu, Z.R. Liu, and C.L. Wu: Acta Mater., 2013, vol. 61, pp. 1210–9. .

    Article  CAS  Google Scholar 

  4. C. Watanabe, S. Takeshita, and R. Monzen: Metall. Mater. Trans. A., 2015, vol. 46A, pp. 2469–75. .

    Article  Google Scholar 

  5. L. Jiang, H. Fu, C. Wang, W. Li, and J. Xie: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 331–41. .

    Article  Google Scholar 

  6. S. Nagarjuna, M. Srinivas, K. Balasubramanian, and D.S. Sarma: Acta Mater., 1996, vol. 44, pp. 2285–93. .

    Article  CAS  Google Scholar 

  7. W.A. Soffa and D.E. Laughlin: Prog. Mater. Sci., 2004, vol. 49, pp. 347–66. .

    Article  CAS  Google Scholar 

  8. S. Semboshi, S. Amano, J. Fu, A. Iwase, and T. Takasugi: Metall. Mater. Trans. A., 2017, vol. 48A, pp. 1501–11. .

    Article  Google Scholar 

  9. H. Tsuda, T. Ito, and Y. Nakayama: Scripta Metall., 1986, vol. 20, pp. 1555–9. .

    Article  CAS  Google Scholar 

  10. Y.R. Cho, Y.H. Kim, and T.D. Lee: J. Mater. Sci., 1991, vol. 26, pp. 2879–86. .

    Article  CAS  Google Scholar 

  11. Z. Sierpiński, J. Gryziecki: Mater. Sci. Eng. A, 1999, vol. 264, 279–285.

  12. J.P. Stobrawa and Z.M. Rdzawski: J. Achiev. Mater. Manuf. Eng., 2006, vol. 15, pp. 21–6. .

    Google Scholar 

  13. T. Miyamoto, M. Nagasako, T. Omori, K. Ishida, R. Kainuma: J. Jpn. Inst. Copper, 2015, vol. 54, pp. 190–195. (Japanese)

  14. J. Miettinen: CALPHAD (Comput. Coupling Phase Diagrams Thermochem.), 2005, vol. 29, pp. 40–48.

  15. A. Prince: Al-Cu-Ni Phase diagram, ASM Alloy Phase Diagram Database, P. Villars, editor-in-chief; H. Okamoto and K. Cenzual, section editors; http://www.asminternational.org, ASM International, Materials Park, OH, 2016.

  16. K. Ishida: Mater. Trans., 2020, vol. 61, pp. 807–19. .

    Article  CAS  Google Scholar 

  17. Z.M. Li, X.N. Li, Y.L. Hu, Y.H. Zheng, M. Yang, N.J. Li, L.X. Bi, R.W. Liu, Q. Wang, C. Dong, Y.X. Jiang, X.W. Zhang: Acta Mater., 2021, vol. 203, 116458.

  18. S. Semboshi, S. Sato, M. Ishikuro, K. Wagatsuma, A. Iwase, and T. Takasugi: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 3401–11. .

    Article  Google Scholar 

  19. S. Semboshi, S. Sato, A. Iwase, and T. Takasugi: Mater. Charact., 2016, vol. 115, pp. 39–45. .

    Article  CAS  Google Scholar 

  20. T. Grosdidier, A. Hazotte, and A. Simom: Mater. Sci. Eng. A., 1994, vol. 29, pp. 2445–58. .

    Google Scholar 

  21. I. Baker, B. Huang, and E.M. Schulson: Acta Metall., 1988, vol. 36, pp. 493–9. .

    Article  CAS  Google Scholar 

  22. A.P. Ventura, C.J. Marvel, G. Pawlikoski, M. Bayes, M. Watanabe, R.P. Vinci, and W. Misiolek: Metall. Mater. Trans. A., 2017, vol. 48A, pp. 6070–82. .

    Article  Google Scholar 

  23. D.A. Porter, K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., CRC Press (2004), pp. 144–171.

  24. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids., 1961, vol. 19, pp. 35–50. .

    Article  Google Scholar 

  25. C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581–91. .

    CAS  Google Scholar 

  26. M. Miki and K. Amano: J. Jpn. Inst. Met. Mater., 1979, vol. 43, pp. 551–7. .

    Article  CAS  Google Scholar 

  27. S. Hori and S. Saji: J. Jpn. Inst. Met. Mater., 1981, vol. 45, pp. 863–70. .

    Google Scholar 

  28. T. Sokabe and S. Hori: J. Jpn. Inst. Met. Mater., 1980, vol. 44, pp. 1024–31. .

    Article  Google Scholar 

  29. Y. Xiang, D.J. Srolovitz, L.-T. Cheng, and E. Weinan: Acta Mater., 2004, vol. 52, pp. 1745–60. .

    Article  CAS  Google Scholar 

  30. B. Reppich: Acta Metall., 1982, vol. 30, pp. 87–94. .

    Article  CAS  Google Scholar 

  31. B. Reppich, P. Schepp, and G. Wehner: Acta Metall., 1982, vol. 30, pp. 95–104. .

    Article  CAS  Google Scholar 

  32. R. Kainuma, X.J. Liu, I. Ohnuma, S.M. Hao, and K. Ishida: Intermetallics, 2005, vol. 13, pp. 655–61.

Download references

Acknowledgments

The authors used the facilities of the Institute for Materials Research (IMR), Tohoku University, and Osaka Prefecture University. We appreciate Prof. R. Kainuma and Prof. T. Ohmori at Tohoku University and Prof. S.Z. Han at the Korea Institute of Materials Science for useful suggestions and discussions. We would also like to thank Mr. E. Aoyagi and Mr. I. Nagano at IMR for technical support. This research is based on the Grant-in-Aid for Scientific Research Program (B) (No. 18H01743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Semboshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 12, 2021; accepted August 12, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semboshi, S., Hariki, R., Shuto, T. et al. Age-Induced Precipitating and Strengthening Behaviors in a Cu–Ni–Al Alloy. Metall Mater Trans A 52, 4934–4945 (2021). https://doi.org/10.1007/s11661-021-06435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06435-x

Navigation