Skip to main content
Log in

Utilizing Additive Friction Stir Processing to Fabricate B4C Reinforced Ti–6Al–4V Matrix Surface Composite: Microstructure Refinement and Enhancement in Mechanical Properties

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ti–6Al–4V/B4C surface composite, having uniform dispersion of reinforcement, was successfully fabricated via additive friction stir processing (AFSP) technique. The chemical reaction between B4C particles and Ti matrix resulted in the formation of intermetallics like TiBX and TiC. Optical microscopy, scanning electron microscopy, electron backscattered diffraction and X-ray diffraction were carried out to investigate the influence of FSP, B4C reinforcement and post-FSP heat treatment on microstructure evolution. Microhardness, Charpy impact and pin on disc wear tests were performed to examine mechanical and wear properties. Fully β transformed microstructure composed of basket-weave lamellar α/β together with the needle-like ultrafine martensite α′ was observed in FSPed stir zone. B4C particles brought about additional microstructure refinement by pinning prior β grain boundaries (Zener pinning) and enhancing the nucleation rate (particle stimulated nucleation). Surface composites fabricated via AFSP exhibited higher hardness, wear-resistance and impact toughness compared to the base metal Ti–6Al–4V and FSPed Ti–6Al–4V.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.F. Smith, Structure and Properties of Engineering Alloys, vol. 411 (McGraw-Hill, New York, 1981)

    Google Scholar 

  2. J.C. Williams, A.F. Belov, Titanium and Its Alloys, Scientific and Technological Aspects, vol. 3 (Springer, Berlin, 1996), pp. 131–172

    Google Scholar 

  3. K.S. Chan, M. Koike, T. Okabe, Acta Biomater. 3, 383 (2007)

    Article  CAS  Google Scholar 

  4. L. Zhang, L. Chen, L. Wang, Adv. Eng. Mater. 22, 1901258 (2020)

    Article  CAS  Google Scholar 

  5. X. Liu, P.K. Chu, C. Ding, Mater. Sci. Eng. R Rep. 47, 49 (2004)

    Article  CAS  Google Scholar 

  6. T.R. Rautray, R. Narayanan, T.Y. Kwon, K.H. Kim, J. Biomed. Mater. Res. B 93, 581 (2010)

    Article  CAS  Google Scholar 

  7. Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo, Appl. Surf. Sci. 242, 177 (2005)

    Article  CAS  Google Scholar 

  8. Z. He, Z. Wang, W. Wang, A. Fan, Z. Xu, Surf. Coat. Tech. 201, 5705 (2007)

    Article  CAS  Google Scholar 

  9. S. Kundu, M. Hussain, V. Kumar, S. Kumar, A. Das, Int. J. Adv. Manuf. Tech. 97, 2635 (2018)

    Article  Google Scholar 

  10. D.V. Lazurenko, I.A. Bataev, I.S. Laptev, A.A. Ruktuev, I.N. Maliutina, M.G. Golkovsky, A.A. Bataev, Mater. Charact. 134, 202 (2017)

    Article  CAS  Google Scholar 

  11. S.A. Adeleke, M.A. Maleque, Adv. Mater. Res. 1024, 207 (2014)

    Article  CAS  Google Scholar 

  12. S.H. Abdollahi, F. Karimzadeh, M.H. Enayati, J. Alloy. Compd. 623, 335 (2015)

    Article  CAS  Google Scholar 

  13. H.A. Deore, A. Bhardwaj, A.G. Rao, J. Mishra, V.D. Hiwarkar, Def. Technol. 16, 1039 (2020)

    Article  Google Scholar 

  14. H.R. Akramifard, M. Shamanian, M. Sabbaghian, M. Esmailzadeh, Mater. Design 54, 838 (2014)

    Article  CAS  Google Scholar 

  15. J. Rodelas, J. Lippold, Metallogr. Microstruct. Anal. 2, 1 (2013)

    Article  CAS  Google Scholar 

  16. A. Shamsipur, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, Surf. Coat. Tech. 206, 1372 (2011)

    Article  CAS  Google Scholar 

  17. Y. Huang, T. Wang, W. Guo, L. Wan, S. Lv, Mater. Design 59, 274 (2014)

    Article  CAS  Google Scholar 

  18. H.A. Deore, J. Mishra, A.G. Rao, H. Mehtani, V.D. Hiwarkar, Surf. Coat. Tech. 374, 52 (2019)

    Article  CAS  Google Scholar 

  19. N. Gangil, S. Maheshwari, A.N. Siddiquee, Mater. Manuf. Process. 33, 805 (2018)

    Article  CAS  Google Scholar 

  20. B. Li, Y. Shen, L. Luo, W. Hu, Mater. Sci. Eng. A 574, 75 (2013)

    Article  CAS  Google Scholar 

  21. Z. Ding, C. Zhang, L. Xie, L.C. Zhang, L. Wang, W. Lu, Metall. Mater. Trans. A 47, 5675 (2016)

    Article  CAS  Google Scholar 

  22. B. Li, Y. Shen, L. Lei, W. Hu, Mater. Manuf. Process. 29, 412 (2014)

    Article  CAS  Google Scholar 

  23. L. Wang, L. Xie, P. Shen, Q. Fan, W. Wan, K. Wang, W. Lu, L. Hua, L.C. Zhang, Mater. Charact. 153, 175 (2019)

    Article  CAS  Google Scholar 

  24. V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, J. Am. Ceram. Soc. 94, 3605 (2011)

    Article  CAS  Google Scholar 

  25. T. Wang, B. Gwalani, S. Shukla, M. Frank, R.S. Mishra, Compos. B 172, 54 (2019)

    Article  CAS  Google Scholar 

  26. C. Suryanarayana, M. Grant Norton, X-Ray Diffraction—A Practical Approach (Plenum, London, 1998)

    Google Scholar 

  27. P. Van Houtte, L. De Buyser, Acta Metall. Mater. 41, 323 (1993)

    Article  Google Scholar 

  28. A.L. Pilchak, W. Tang, H. Sahiner, A.P. Reynolds, J.C. Williams, Metall. Mater. Trans. A 42, 745 (2011)

    Article  CAS  Google Scholar 

  29. S. Yoon, R. Ueji, H. Fujii, Mater. Charact. 106, 352 (2015)

    Article  CAS  Google Scholar 

  30. K. Kitamura, H. Fujii, Y. Iwata, Y.S. Sun, Y. Morisada, Mater. Design 46, 348 (2013)

    Article  CAS  Google Scholar 

  31. A.L. Pilchak, J.C. Williams, Metall. Mater. Trans. A 42, 773 (2011)

    Article  CAS  Google Scholar 

  32. J. Su, J. Wang, R.S. Mishra, R. Xu, J.A. Baumann, Mater. Sci. Eng. A 573, 67 (2013)

    Article  CAS  Google Scholar 

  33. B. Li, Y. Shen, W. Hu, L. Luo, Surf. Coat. Tech. 239, 160 (2014)

    Article  CAS  Google Scholar 

  34. G.F. VanderVoort, Atlas of Time-Temperature Diagrams for Nonferrous Alloys (ASM International, Materials Park, 1991), pp. 376–80

    Google Scholar 

  35. T. Ahmed, H.J. Rack,  Mater. Sci. Eng. A 243, 206 (1998)

    Article  Google Scholar 

  36. P. Edwards, M. Ramulu, Int. J. Fatigue 75, 19 (2015)

    Article  CAS  Google Scholar 

  37. S. Malinov, W. Sha, Z. Guo, C.C. Tang, A.E. Long, Mater. Charact. 48, 279 (2002)

    Article  CAS  Google Scholar 

  38. B. Verlinden, J. Driver, I. Samajdar, R.D. Doherty, Thermo-Mechanical Processing of Metallic Materials (Pergamon Materials Series, Cambridge, 2007), p. 187

    Google Scholar 

  39. M.S. Joo, D.W. Suh, H.K.D.H. Bhadeshia, ISIJ Int. 53, 1305 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge National Facility for Texture and OIM (A DST-IRPHA project), IIT Mumbai for XRD and EBSD measurements. The authors would like to thank reviewer(s) and editor for their constructive criticism(s) regarding our work, which has indeed helped us to improve the manuscript significantly. One of the authors VDH would like to acknowledge the Science and Engineering Research Board (SERB) for financial assistance (EEQ/2016/000422) to carry out project work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Hiwarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deore, H.A., Mishra, J., Rao, A.G. et al. Utilizing Additive Friction Stir Processing to Fabricate B4C Reinforced Ti–6Al–4V Matrix Surface Composite: Microstructure Refinement and Enhancement in Mechanical Properties. Met. Mater. Int. 28, 322–335 (2022). https://doi.org/10.1007/s12540-021-01094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01094-4

Keywords

Navigation