Skip to main content
Log in

Investigation of Cu Interlayer on Joint Formation of Ti/Mg Bimetal Fabricated by Liquid–Solid Compound Casting Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, TC4/AZ91D bimetallic composites has been prepared by liquid–solid compound casting process adapting various thickness of Cu coating. The effects of Cu coating thickness on the evolution of interface microstructures and joint mechanical properties are investigated. The results indicate that metallurgical bonded joints are obtained with Cu coating thickness ranging from 36.7 to 51.4 μm. With the increase of Cu coating thickness, the interface microstructure evolves from δ-Mg + Mg2Cu eutectic structure to Mg–Cu intermetallic compound (IMC) Cu2Mg + Mg2Cu and Mg–Al–Cu ternary intermetallic compound. The calculation results of formation enthalpy and chemical potential of Mg–Al–Cu system suggest that Cu element prefers to react with Mg element and formed Mg–Cu IMC. In particular, when Cu coating thickness reaches 36.7 μm, the average shear strength of the bimetal reaches a maximum of 65.3 MPa. Further increasing Cu coating thickness leads to the generation of thick Mg2Cu IMC layer and Mg2Cu + Cu2Mg mixed IMC layer which are proved to be harmful to the shear strength of TC4/AZ91D bimetals. All the fracture surfaces of the bimetallic composites exhibite to have a brittle fracture morphology. However, the fracture location is different with each other. For Cu coating thickness of 36.7 μm, the interface fractures at the δ-Mg + Mg2Cu eutectic structure, while the interface fractures at the Cu2Mg + Mg–Al–Cu ternary intermetallic layers when Cu coating thickness is 44.2 μm and 51.4 μm.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Guleryuz, H. Cimenoglu, J. Alloy. Compd. 472, 241 (2009)

    Article  CAS  Google Scholar 

  2. Y.M. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W.D. Huang, Acta Mater. 132, 82 (2017)

    Article  CAS  Google Scholar 

  3. W. Zhao, W. Su, L. Li, D. Fang, N. Chen, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00869-5

    Article  Google Scholar 

  4. Z. Han, H. Pan, Y. Li, A.A. Luo, A.K. Sachdev, Metall. Mater. Trans. B 46, 328 (2014)

    Article  Google Scholar 

  5. P. Huo, Z. Zhao, P. Bai, X. Yuan, Q. Wang, R. Zhao, L. Zhang, W. Du, B. Han, Y. Wang, J. Alloy. Compd. 861, 529 (2021)

    Article  Google Scholar 

  6. S. Ahmadi, G. Faraji, V. Alimirzaloo, A. Donyavi, Met. Mater. Int. 27, 2957 (2021)

    Article  Google Scholar 

  7. D. Dubey, K. Kadali, H. Kancharla, A. Zindal, J. Jain, K. Mondal, S.S. Singh, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00764-z

    Article  Google Scholar 

  8. F. Wen, J. Zhao, M. Yuan, J. Wang, D. Zheng, J. Zhang, K. He, J. Shangguan, Y. Guo, J. Magnes. Alloy. 9, 1382 (2021)

    Article  Google Scholar 

  9. G. Çam, M. Koçak, Sci. Technol. Weld. Joi. 3, 105 (1998)

    Article  Google Scholar 

  10. G. Çam, Int. Mater. Rev. 56, 1 (2011)

    Article  Google Scholar 

  11. F. Liu, Q. Hou, H. Hu, Y. Ma, S. Ning, Y. Wu, Sci. Technol. Weld. Joi. 25, 581 (2020)

    Article  CAS  Google Scholar 

  12. A.M. Atieh, T.I. Khan, J. Mater. Sci. 48, 6737 (2013)

    Article  CAS  Google Scholar 

  13. A.M. Atieh, T.I. Khan, J. Mater. Sci. 49, 7648 (2014)

    Article  CAS  Google Scholar 

  14. C. Tan, B. Chen, S. Meng, K. Zhang, X. Song, L. Zhou, J. Feng, Mater. Design 99, 127 (2016)

    Article  CAS  Google Scholar 

  15. J. Liu, C. Tan, L. Wu, X. Zhao, Z. Zhang, B. Chen, X. Song, J. Feng, Opt. Laser Technol. 117, 200 (2019)

    Article  CAS  Google Scholar 

  16. Z. Jiang, Z. Fan, W. Jiang, G. Li, Y. Wu, F. Guan, H. Jiang, J. Mater. Process. Tech. 261, 149 (2018)

    Article  CAS  Google Scholar 

  17. W. Jiang, G. Li, Y. Wu, X. Liu, Z. Fan, J. Mater. Process. Tech. 258, 239 (2018)

    Article  CAS  Google Scholar 

  18. J.-H. Zhao, W.-Q. Zhao, S. Qu, Y.-Q. Zhang, T. Nonferr. Metal. Soc. 29, 51 (2019)

    Article  CAS  Google Scholar 

  19. G. Li, W. Jiang, W. Yang, Z. Jiang, F. Guan, H. Jiang, Z. Fan, Metall. Mater. Trans. B 50, 1076 (2018)

    Article  Google Scholar 

  20. C. Zang, J. Liu, C. Tan, K. Zhang, X. Song, B. Chen, L. Li, J. Feng, J. Manuf. Process. 32, 595 (2018)

    Article  Google Scholar 

  21. C. Tan, X. Song, B. Chen, L. Li, J. Feng, Mater. Lett. 167, 38 (2016)

    Article  CAS  Google Scholar 

  22. C. Tan, J. Yang, X. Zhao, K. Zhang, X. Song, B. Chen, L. Li, J. Feng, J. Alloy. Compd. 764, 186 (2018)

    Article  CAS  Google Scholar 

  23. S.T. Auwal, S. Ramesh, Z. Zhang, J. Liu, C. Tan, S.M. Manladan, F. Yusof, F. Tarlochan, J. Manuf. Process. 37, 251 (2019)

    Article  Google Scholar 

  24. A.M. Atieh, T.I. Khan, J. Mater. Eng. Perform. 23, 4042 (2014)

    Article  CAS  Google Scholar 

  25. Z. Zhang, C. Tan, X. Zhao, B. Chen, X. Song, H. Zhao, J. Mater. Process. Tech. 261, 61 (2018)

    CAS  Google Scholar 

  26. C. Tan, C. Zang, X. Zhao, H. Xia, Q. Lu, X. Song, B. Chen, G. Wang, Opt. Laser Technol. 108, 378 (2018)

    Article  CAS  Google Scholar 

  27. S.-J. Hwang, Y.-C. Joo, J. Koike, Thin Solid Films 516, 7588 (2008)

    Article  CAS  Google Scholar 

  28. A.R. Miedema, P.F. de Châtel, F.R. de Boer, Physica B+C 100, 1 (1980)

    CAS  Google Scholar 

  29. G.W. Toop, T. Metall. Soc. AIME 223, 850 (1965)

    Google Scholar 

  30. T. Tanaka, N.A. Gokcen, Z.-I. Morita, Z. Metallkd. 81, 349 (1990)

    CAS  Google Scholar 

  31. A.A. Nayeb-Hashemi, J.B. Clark, Bull. Alloy Phase Diagr. 5, 36 (1984)

    Article  CAS  Google Scholar 

  32. L. Liu, X. Qi, J. Mater. Sci. 44, 5725 (2009)

    Article  CAS  Google Scholar 

  33. T. Buhler, S.G. Fries, P.J. Spencer, H.L. Lukas, J. Phase Equilib. Diff. 19, 317 (1998)

    Article  CAS  Google Scholar 

  34. H. Wang, L. Liu, F. Liu, Mater. Design 50, 463 (2013)

    Article  CAS  Google Scholar 

  35. X.-D. Qi, L.-M. Liu, Mater. Design 33, 436 (2012)

    Article  CAS  Google Scholar 

  36. G. Li, W. Jiang, F. Guan, J. Zhu, Z. Zhang, Z. Fan, J. Mater. Process. Tech. 288, 116874 (2021)

    Google Scholar 

  37. G. Song, G. An, L. Liu, Mater. Design 35, 323 (2012)

    Article  CAS  Google Scholar 

  38. K.H. Zuo, D.L. Jiang, Q.L. Lin, Y.-P. Zeng, Mater. Sci. Eng. A 443, 296 (2007)

    Article  Google Scholar 

  39. J. Song, Y. Zhang, Y. Fang, H. Fan, L. Hu, J. Qu, J. Eur. Ceram. Soc. 35, 1581 (2015)

    Article  CAS  Google Scholar 

  40. L.J. Huang, L. Geng, H.Y. Xu, H.X. Peng, Mater. Sci. Eng. A 528, 2859 (2011)

    Article  Google Scholar 

  41. J. Dai, B. Jiang, J. Zhang, Q. Yang, Z. Jiang, H. Dong, F. Pan, J. Phase Equilib. Diff. 36, 613 (2015)

    Article  CAS  Google Scholar 

  42. C. Tan, W. He, X. Gong, L. Li, J. Feng, Mater. Design 78, 51 (2015)

    Article  CAS  Google Scholar 

  43. D.-X. Xu, C.-L. Yang, K.-N. Zhao, H.-X. Li, J.-S. Zhang, T. Nonferr Metal. Soc. 29, 1233 (2019)

    Article  CAS  Google Scholar 

  44. Y. Hu, Y. Xiong, X. Chen, H. Bai, Y. Tian, G. Liu, Appl. Opt. 57, 4277 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports from the National Natural Science Foundation of China (No. 51875062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, F., Zhao, J., Feng, K. et al. Investigation of Cu Interlayer on Joint Formation of Ti/Mg Bimetal Fabricated by Liquid–Solid Compound Casting Process. Met. Mater. Int. 28, 1711–1724 (2022). https://doi.org/10.1007/s12540-021-01027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01027-1

Keywords

Navigation