Skip to main content
Log in

Effect of Composition, Mechanical Alloying Temperature and Cooling Rate on Martensitic Transformation and Its Reversion in Mechanically Alloyed Stainless Steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Stainless steels with Fe/Cr/Ni ratios of 74/18/8, 71/17/12, and 55/20/25 were produced from elemental powders by high energy mechanical alloying at both room and cryogenic temperatures. The effect of mechanical alloying temperature on martensitic transformation, the reversion of deformation-induced martensite-to-austenite upon annealing, and the influence of cooling rate on the thermal stability of reversed austenite upon cooling to room temperature were investigated in detail by in-situ and ex-situ X-ray diffraction (XRD) experiments, transmission electron microscopy (TEM) and Thermo-Calc simulations. A relative comparison of stainless steels after room temperature mechanical alloying indicated that the low nickel-containing steel underwent an almost complete martensitic transformation. However, martensitic transformation by deformation through mechanical alloying at room temperature would not be possible with increasing nickel contents but was created partially at cryogenic temperature, the degree of which depended on the steel composition. The in-situ XRD studies exhibited that the deformation-induced martensite completely transformed to austenite at elevated temperatures. The complete reverse transformation temperature simulated by Thermo-Calc software was found to be lower than that of the experimentally determined ones. Additionally, the different cooling rates from the reversed austenite demonstrated that the slower cooling increased the thermal stability of reversed austenite at room temperature.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Belyakov, Y. Kimura, K. Tsuzaki, Acta Mater. 54, 2521–2532 (2006)

    Article  CAS  Google Scholar 

  2. K.A. Darling, M. Kapoor, H. Kotan, B.C. Hornbuckle, S.D. Walck, G.B. Thompson, M.A. Tschopp, L.J. Kecskes, J. Nucl. Mater. 467, 205–213 (2015)

    Article  CAS  Google Scholar 

  3. C.C. Koch, Scr. Mater. 49, 657–662 (2003)

    Article  CAS  Google Scholar 

  4. Y.S. Lee, K. Ishikawa, M. Okayasu, Met. Mater. Int. 25, 705–712 (2019)

    Article  CAS  Google Scholar 

  5. H. Kotan, K.A. Darling, Mater. Charact. 138, 186–194 (2018)

    Article  CAS  Google Scholar 

  6. G. Sun, L. Du, J. Hu, B. Zhang, R.D.K. Misra, Mater. Sci. Eng. A 746, 341–355 (2019)

    Article  CAS  Google Scholar 

  7. H. Kotan, J. Fac. Eng. Archit. Gazi Univ. 34, 1265–1272 (2019)

    Google Scholar 

  8. H. Kotan, K.A. Darling, Mater. Sci. Eng. A 686, 168–175 (2017)

    Article  CAS  Google Scholar 

  9. V. Leskovšek, M. Godec, P. Kogej, Metall. Mater. Trans. A 45, 2819–2826 (2014)

    Article  CAS  Google Scholar 

  10. K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, Y. Bréchet, Mater. Sci. Eng. A 387–389, 873–881 (2004)

    Article  CAS  Google Scholar 

  11. Y. Xu, S.H. Zhang, M. Cheng, H.W. Song, Scr. Mater. 67, 771–774 (2012)

    Article  CAS  Google Scholar 

  12. G. Cios, T. Tokarski, A. Żywczak, R. Dziurka, M. Stępień, M. Marciszko, B. Pawłowski, K. Wieczerzak, P. Bała, Metall. Mater. Trans. A 48, 4999–5008 (2017)

    Article  CAS  Google Scholar 

  13. I.Y. Litovchenko, A.N. Tyumentsev, M.I. Zahozheva, A.V. Korznikov, Rev. Adv. Mater. Sci. 31, 47–53 (2012)

    CAS  Google Scholar 

  14. S. Takaki, T. Tsuchiyama, K. Nakashima, H. Hidaka, K. Kawasaki, Y. Futamura, Met. Mater. Int. 10, 533–539 (2004)

    Article  CAS  Google Scholar 

  15. J. Talonen, P. Nenonen, G. Pape, H. Hänninen, Metall. Mater. Trans. A 36, 421–432 (2005)

    Article  Google Scholar 

  16. K.K. Spencer, M. Véron, Y. Zhang, J.D. Embury, Mater. Sci. Technol. 25, 7–17 (2009)

    Article  CAS  Google Scholar 

  17. R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya, M.C. Somani, L.P. Karjalainen, Mater. Sci. Eng. A 527, 7779–7792 (2010)

    Article  CAS  Google Scholar 

  18. G.S. Sun, J. Hu, B. Zhang, L.X. Du, Mater. Sci. Eng. A 732, 350–358 (2018)

    Article  CAS  Google Scholar 

  19. R.Z. Valiev, I.V. Alexandrov, Acta Metall. 12, 35–40 (1999)

    Google Scholar 

  20. X.H. Chen, J. Lu, L. Lu, K. Lu, Scr. Mater. 52, 1039–1044 (2005)

    Article  CAS  Google Scholar 

  21. J. Han, Y.K. Lee, Acta Mater. 67, 354–361 (2014)

    Article  CAS  Google Scholar 

  22. M. Shirdel, H. Mirzadeh, M.H. Parsa, Mater. Sci. Eng. A 624, 256–260 (2015)

    Article  CAS  Google Scholar 

  23. R.D.K. Misra, B.R. Kumar, M. Somani, P. Karjalainen, Scr. Mater. 59, 79–82 (2008)

    Article  CAS  Google Scholar 

  24. J. Hidalgo, K.O. Findley, M.J. Santofimia, Mater. Sci. Eng. A 690, 337–347 (2017)

    Article  CAS  Google Scholar 

  25. J.M. Alves, L.P. Brandão, A.D.S. Paula, Mater. Res. 22, 6–10 (2019)

    Google Scholar 

  26. S. Kheiri, H. Mirzadeh, M. Naghizadeh, Mater. Sci. Eng. A 759, 90–96 (2019)

    Article  CAS  Google Scholar 

  27. Y. Li, F. Bu, W. Kan, H. Pan, Mater. Manuf. Process. 28, 256–259 (2013)

    Article  CAS  Google Scholar 

  28. A.Y. Chen, H.H. Ruan, J. Wang, H.L. Chan, Q. Wang, Q. Li, J. Lu, Acta Mater. 59, 3697–3709 (2011)

    Article  CAS  Google Scholar 

  29. E. Nagy, V. Mertinger, F. Tranta, J. Sólyom, Mater. Sci. Eng. A 378, 308–313 (2004)

    Article  CAS  Google Scholar 

  30. J. Manjanna, S. Kobayashi, Y. Kamada, S. Takahashi, H. Kikuchi, J. Mater. Sci. 43, 2659–2665 (2008)

    Article  CAS  Google Scholar 

  31. J. Talonen, H. Hänninen, Acta Mater. 55, 6108–6118 (2007)

    Article  CAS  Google Scholar 

  32. M.H. Enayati, M.R. Bafandeh, S. Nosohian, J. Mater. Sci. 42, 2844–2848 (2007)

    Article  CAS  Google Scholar 

  33. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, D.K. Matlock, Scr. Mater. 50, 1445–1449 (2004)

    Article  CAS  Google Scholar 

  34. H. Kotan, J. Alloy. Compd. 749, 948–954 (2018)

    Article  CAS  Google Scholar 

  35. R. Naraghi, P. Hedström, A. Borgenstam, Steel Res. Int. 82, 337–345 (2011)

    Article  CAS  Google Scholar 

  36. W.S. Lee, C.F. Lin, Scr. Mater. 43, 777–782 (2000)

    Article  CAS  Google Scholar 

  37. A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, S. Tarafder, Mater. Sci. Eng. A 486, 283–286 (2008)

    Article  CAS  Google Scholar 

  38. L.E. Murr, K.P. Staudhammer, S.S. Hecker, Metall. Trans. A 13, 627–635 (1982)

    Article  CAS  Google Scholar 

  39. N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, S. Takaki, Acta Mater. 58, 895–903 (2010)

    Article  CAS  Google Scholar 

  40. A. Das, P.C. Chakraborti, S. Tarafder, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 27, 366–370 (2011)

    Article  CAS  Google Scholar 

  41. A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, R.J. Comstock, Metall. Mater. Trans. A 37, 1875–1886 (2006)

    Article  Google Scholar 

  42. A. Hedayati, A. Najafizadeh, A. Kermanpur, F. Forouzan, J. Mater. Process. Technol. 210, 1017–1022 (2010)

    Article  CAS  Google Scholar 

  43. K. Nohara, Y. Ono, N. Ohashi, Tetsu-To-Hagane 63, 772–782 (1977)

    Article  CAS  Google Scholar 

  44. R. Montanari, Mater. Lett. 10, 57–61 (1990)

    Article  CAS  Google Scholar 

  45. A. Szymańska, D. Oleszak, A. Grabias, M. Rosiński, K. Sikorski, J. Kazior, A. Michalski, K.J. Kurzydłowski, Rev. Adv. Mater. Sci. 8, 143–146 (2004)

    Google Scholar 

  46. R. Esmaeilzadeh, M. Salimi, C. Zamani, A.M. Hadian, A. Hadian, J. Alloy. Compd. 766, 341–348 (2018)

    Article  CAS  Google Scholar 

  47. J.L.R. Barragan, R.A.R. Diaz, M.L. Ojeda Martinez, S. Gaona Jimenez, J.A. Juarez Islas, Adv. Mater. Sci. Eng. 2019 (2019)

  48. C. Suryanarayana, Prog. Mater. Sci. 46, 1–184 (2001)

    Article  CAS  Google Scholar 

  49. M.H. Enayati, M.R. Bafandeh, J. Alloy. Compd. 454, 228–232 (2008)

    Article  CAS  Google Scholar 

  50. F. Forouzan, A. Najafizadeh, A. Kermanpur, A. Hedayati, R. Surkialiabad, Mater. Sci. Eng. A 527, 7334–7339 (2010)

    Article  CAS  Google Scholar 

  51. M. Karimi, A. Najafizadeh, A. Kermanpur, M. Eskandari, Mater. Charact. 60, 1220–1223 (2009)

    Article  CAS  Google Scholar 

  52. C. Lei, X. Li, X. Deng, Z. Wang, Metall. Mater. Trans. A 49, 6134–6146 (2018)

    Article  CAS  Google Scholar 

  53. R.D.K. Misra, W.W. Thein-Han, M.C. Somani, L.P. Karjalainen, Adv. Eng. Mater. 11, 235–242 (2009)

    Article  CAS  Google Scholar 

  54. S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, Mater. Sci. Eng. A 636, 221–230 (2015)

    Article  CAS  Google Scholar 

  55. M. Shirdel, H. Mirzadeh, M.H. Parsa, Mater. Charact. 103, 150–161 (2015)

    Article  CAS  Google Scholar 

  56. F.C. Eichelman, G.H. Hull, Trans. Am. Soc. Met. 45, 77–104 (1953)

    Google Scholar 

  57. H. Kotan, Mater. Sci. Eng. A 647, 136–143 (2015)

    Article  CAS  Google Scholar 

  58. S.D. Kaloshkin, V.V. Tcherdyntsev, Y.V. Baldokhin, I.A. Tomilin, E.V. Shelekhov, J. Non. Cryst. Solids. 287, 329–333 (2001)

    Article  CAS  Google Scholar 

  59. S.J. Lee, K.S. Park, Metall. Mater. Trans. A 44, 3423–3427 (2013)

    Article  CAS  Google Scholar 

  60. J.R.C. Guimarães, P.R. Rios, J. Mater. Sci. 45, 1074–1077 (2010)

    Article  CAS  Google Scholar 

  61. A. García-Junceda, C. Capdevila, F.G. Caballero, C.G. de Andrés, Scr. Mater. 58, 134–137 (2008)

    Article  CAS  Google Scholar 

  62. M. Saber, H. Kotan, C.C. Koch, R.O. Scattergood, J. Appl. Phys. 114, 103510 (2013)

    Article  CAS  Google Scholar 

  63. Y.K. Lee, H.C. Shin, D.S. Leem, J.Y. Choi, W. Jin, C.S. Choi, Mater. Sci. Technol. 19, 393–398 (2003)

    Article  CAS  Google Scholar 

  64. W. Cao, J.A. Krumhansl, R.J. Gooding, Phys. Rev. B. 41, 11319–11327 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant Number 119M120. The authors wish to thank the National Nanotechnology Research Center (UNAM—Bilkent University) for FIB and TEM investigations and ONATUS Öngörü Teknolojileri Company for the support with the Thermo-Calc simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Kotan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, G., Kotan, H. Effect of Composition, Mechanical Alloying Temperature and Cooling Rate on Martensitic Transformation and Its Reversion in Mechanically Alloyed Stainless Steels. Met. Mater. Int. 27, 3765–3775 (2021). https://doi.org/10.1007/s12540-020-00866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00866-8

Keywords

Navigation