Skip to main content
Log in

Microstructure development of steel during severe plastic deformation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The microstructure development during plastic deformation was reviewed for iron and steel which were subjected to cold rolling or mechanical milling (MM) treatment, and the change in strengthening mechanism caused by the severe plastic deformation (SPD) was also discussed in terms of ultra grain refinement behavior. The microstructure of cold-rolled iron is characterized by a typical dislocation cell structure, where the strength can be explained by dislocation strengthening. It was confirmed that the increase in dislocation density by cold working is limited at 1016m−2, which means the maximum hardness obtained by dislocation strengthening is HV3.7 GPa. However, the iron is abnormally work-hardened over the maximum dislocation strengthening by SPD of MM because of the ultra grain refinement caused by the SPD. In addition, impurity of carbon plays an important role in such grain refinement: the carbon addition leads to the formation of nano-crystallized structure in iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Report of Supermental Project, p. 18 JRCM, Tokyo, Japan (2002).

  2. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong,Scripta mater. 39, 1221 (1998).

    Article  CAS  Google Scholar 

  3. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai,Acta mater. 47, 579 (1999).

    Article  CAS  Google Scholar 

  4. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa,Scripta mater. 40, 795 (1999).

    Article  CAS  Google Scholar 

  5. N. Tsuji, T. Iwata, M. Sato, S. Fujimoto and Y. Minamino,Sci. Tech. Adv. Mater. 5, 173 (2004).

    Article  CAS  Google Scholar 

  6. M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon,Materials Science Forum 204–206, 431 (1996).

    Article  Google Scholar 

  7. R. Z. Valiev,Mater. Sci. Eng. A 234–236, 59 (1997).

    Google Scholar 

  8. A. Y. Vinogradov, S. Hashimoto, V. V. Stolyarov, and R. Z. Valiev,Mater. Sci. Eng. A 318, 163 (2001).

    Article  Google Scholar 

  9. A. Yamashita, Z. Horita, and G. Langdon,Mater. Sci. Eng. A 300, 142 (2001).

    Article  Google Scholar 

  10. Y. Fukuda, K. Oh-ishi, Z. Horita, and T. G. Langdon,Acta mater. 50, 1359 (2002).

    Article  CAS  Google Scholar 

  11. Y. Kimura and S. Takaki,Proceedings of 1998 Powder Metallurgy World Congress & Exhibition (ed, C. Molins, Jr.), p. 573, EPMA, Granada, Spain (1998).

    Google Scholar 

  12. M. Ameyama, M. Hiromitsu, and N. Imai,Tetsu-to-Hagané 84, 357 (1998).

    CAS  Google Scholar 

  13. H. Hidaka, T. Suzaki, Y. Kimura, and S. Takaki,Materials Science Forum 304–306, 115 (1998).

    Google Scholar 

  14. Y. Kimura, S. Takaki, S. Suejima, R. Uemori, and H. Tamehiro,ISIJ Int. 39, 176 (1999).

    Article  CAS  Google Scholar 

  15. J. Yin, M. Umemoto, Z. G. Liu, and K. Tsuchiya,ISIJ Int. 41, 1389 (2001).

    Article  CAS  Google Scholar 

  16. H. Hidaka, T. Tsuchiyama, and S. Takaki,Scripta mater. 44, 1503 (2001).

    Article  CAS  Google Scholar 

  17. K. Nakashima, Y. Futamura, M. Suzuki, T. Tsuchiyama, and S. Takaki,Scripta mater., in submission.

  18. H. Hidaka, K. Kawasaki, T. Tsuchiyama, and S. Takaki,Mater. Trans. 44, 1912 (2003).

    Article  CAS  Google Scholar 

  19. Y. Xu, Z. G. Liu, M. Umemoto, and K. Tsuchiya,Metall. Mater. Trans. A 39, 2195 (2002).

    Article  Google Scholar 

  20. X. Ahang, H. Wang, J. Narayan, and C. C. Koch,Acta mater. 49, 1319 (2001).

    Article  Google Scholar 

  21. B. J. M. Aikin and T. H. Courtney,Metall. Trans. A 24, 647 (1993).

    Article  Google Scholar 

  22. M. Umemoto, K. Tsuchiya, and Zhi-Guang Liu,J. Jpn. Soc. Powder and Powder Metall. 50, 189 (2003).

    CAS  Google Scholar 

  23. J. E. Bailey and P. B. Hirsch,Philos. Mag. 5, 485 (1960).

    Article  ADS  CAS  Google Scholar 

  24. G. K. Williamson and W. H. Hall,Acta metal. 1, 22 (1953).

    Article  CAS  Google Scholar 

  25. G. K. Williamson and R. E. Smallman,Philos. Mag. 1, 34 (1956).

    Article  ADS  CAS  Google Scholar 

  26. M. Natori, Y. Futamura, T. Tsuchiyama, and S. Takaki,Scripta mater., in submission.

  27. Y. Kimura, H. Hidaka, and S. Takaki,Mater. Trans. JIM 40, 1149 (1999).

    CAS  Google Scholar 

  28. H. Hidaka, Y. Kimura, and S. Takaki,Tetsu-to-Hagané 85, 52 (1999).

    CAS  Google Scholar 

  29. B. D. Cullity,Elements of X-Ray Diffraction, Second Edition, p. 256, Addison-Wesley Publishing Co., Inc., Massachusetts USA (1978).

    Google Scholar 

  30. S. Ohsaki, K. Hono, H. Hidaka, and S. Takaki,Scripta mater., in press.

  31. A. Ohmori, S. Torizuka, K. Nagai, K. Yamada, and Y. Kogo,Tetsu-to-Hagané 88, 857 (2002).

    CAS  Google Scholar 

  32. N. Kamikawa, N. Tsuji, and Y. Saito,Tetsu-to-Hagané 89, 273 (2003).

    CAS  Google Scholar 

  33. V. G. Gavriljuk and B. D. Shanina,Proceedings of the 7th International Conference on High Nitrogen Steels (eds., N. Akdut, B. C. De Cooman and J. Foct), p. 29, GRIPS media GmbH, Bad Harzburg Germany (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setsuo Takaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takaki, S., Tsuchiyama, T., Nakashima, K. et al. Microstructure development of steel during severe plastic deformation. Met. Mater. Int. 10, 533–539 (2004). https://doi.org/10.1007/BF03027415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027415

Keywords

Navigation