Skip to main content
Log in

Effect of Pd addition on the microstructure of Ti-30Nb alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of Pd addition on deformation mechanisms, phase transitions and twinning has been extensively investigated in as-cast β-type Ti-30Nb (wt%) alloy using electron backscattered diffraction and transmission electron microscopy techniques. The addition of Pd resulted in refinement of the metastable ω phase. The {112}<111>-type twinning was found to strongly depend on the size of the ω particles. No β phase twins were observed in the binary alloy with larger ω particles. In the ternary alloy with much finer ω particles, {332}<113>and abundant {112}<111>-type twins were detected. On the contrary, the volume fraction of stress-induced α“ martensite in the binary alloy was higher than that in the ternary one. Based on the analysis of phase diagrams and Gibbs free energy calculations, such complex phase transition and twinning phenomena have been explained in terms of relative phase stability between the ω particles and the β matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. O’Neill, J. Iron and Steel Inst. 117, 689 (1928).

    Google Scholar 

  2. A. B. Greninger, Nature 135, 916 (1935).

    Article  Google Scholar 

  3. J. P. Hirth and J. Lothe, Theory of Dislocations, pp.811–834, Krieger, Melbourne, FL (1992).

    Google Scholar 

  4. J. W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  5. E. O. Hall, Twinning and Diffusionless Transformations in Crystals, pp.1–181, Butterworths, London (1954).

    Google Scholar 

  6. M. V. Klassen-Nekhlyudova, Mechanical Twinning of Crystals (translated from Russian Mekhanicheskoye Dvoynikovannye Kristallov), pp.106–111, Consultants Bureau, New York (1964).

    Book  Google Scholar 

  7. R. J. Wasilewski, Metall. Trans. A 8, 391 (1977).

    Article  Google Scholar 

  8. R. J. Wasilewski, Metall. Trans. 1, 2641 (1970).

    Article  Google Scholar 

  9. L. Liu, J. Wang, S. K. Gong, and S. X. Mao, Phys. Rev. Lett. 106, 636 (2011).

    Google Scholar 

  10. H. Tobe, H. Young-Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Acta Mater. 64, 345 (2014).

    Article  Google Scholar 

  11. S. Q. Wu, D. H. Ping, Y. Yamabe-Mitarai, W. L. Xiao, Y. Yang, Q. M. Hu, G. P. Li, and R. Yang, Acta Mater. 62, 122 (2014).

    Article  Google Scholar 

  12. P. D. Frost, W. M. Parris, L. L. Hirsch, J. R. Doig, and C. M. Schwartz, Trans. Amer. Soc. Metals 46, 231 (1954).

    Google Scholar 

  13. B. S. Hickman, J. Mater. Sci. 4, 554 (1969).

    Article  Google Scholar 

  14. A. F. Yedneral and M. D. Perkas, The Physics of Metal and Metallographology 33, 89 (1972).

    Google Scholar 

  15. R. Ayer, L. P. Bendel, and V. F. Zackay, Metall. Trans. A 23, 2447 (1992).

    Article  Google Scholar 

  16. A. Prasetyo, F. Reynaud, and H. Warlimont, Acta. Metall. 24, 1009 (1976).

    Article  Google Scholar 

  17. S. K. Sikka, Y. K. Vohra, and R. Chidambaram, Prog. Mater. Sci. 27, 245 (1982).

    Article  Google Scholar 

  18. L. M. Hsiung and D. H. Lassila, Acta Mater. 48, 4851 (2000).

    Article  Google Scholar 

  19. G. Shao and P. Tsakiropoulos, Acta Mater. 48, 3671 (2000).

    Article  Google Scholar 

  20. G. M. Cheng, H. Yuan, W. W. Jian, W. Z. Xu, P. C. Millett, and Y. T. Zhu, Scripta Mater. 68, 130 (2013).

    Article  Google Scholar 

  21. D. H. Ping and W. T. Geng, Mater. Chem. Phys. 139, 830 (2013).

    Article  Google Scholar 

  22. D. H. Ping, Acta Metall. Sinica (Engl. Let.) 27, 1 (2014).

    Article  Google Scholar 

  23. J. M. Silcock, Acta Metall. 6, 481 (1958).

    Article  Google Scholar 

  24. S. L. Sass, Acta Metall. 17, 813 (1969).

    Article  Google Scholar 

  25. D. de Fontaine, Acta Metall. 18, 275 (1970).

    Article  Google Scholar 

  26. M. Abdel-Hady, Keita Hinoshita, and M. Morinaga, Scr. Mater. 55, 477 (2006).

    Article  Google Scholar 

  27. R. W. Balluffi, Grain-Boundary Structure and Kinetics, pp.448–455, American Society for Metals, Ohio (1980).

    Google Scholar 

  28. M. Morinaga, N. Yukawa, T. Maya, K. Sone, and H. Adachi, Proc. 6 th World Conf. on Titanium, France, 1601 (1988).

    Google Scholar 

  29. D. L. Moffat and U. R. Kattner, Metall. Trans. A 19, 2389 (1988).

    Article  Google Scholar 

  30. A. T. Dinsdale, Calphad 15, 317 (1991).

    Article  Google Scholar 

  31. C. Guo, M. Li, C. Li, and Z. Du, Calphad 35, 512 (2011).

    Article  Google Scholar 

  32. B. C. Giessen, N. J. Grant, D. P. Parker, R. C. Manuszewski, and R. M. Waterstrat, Metall. Trans. A 11, 709 (1980).

    Article  Google Scholar 

  33. M. S. Chandrasekharaiah, Bulletin of Alloy Phase Diagrams 9, 449 (1988).

    Article  Google Scholar 

  34. S. L. Chen, S. Daniel, F. Zhang, Y. A. Chang, X.-Y. Yan, F. Y. Xie, R. Schmid-Fetzer, and W. A. Oates, Calphad 26, 188 (2002).

    Google Scholar 

  35. M. Arciniegas, J. Peña, J. M. Manero, J. C. Paniagua, and F. J. Gil, Philos. Mag. 88, 2529 (2008).

    Article  Google Scholar 

  36. M. Oka and Y. Taniguchi, J. Japan Inst. Metals 42, 814 (1978).

    Google Scholar 

  37. T. Furuhara and K. Kishimoto, T. Maki. Mater. Trans. 12, 843 (1994).

    Article  Google Scholar 

  38. M. Ahmed, D. Wexler, G. Casillas, O. M. Ivasishin, and E. V. Pereloma, Acta Mater. 84, 124 (2015).

    Article  Google Scholar 

  39. X. H. Min, K. Tsuzaki, S. Emura, and K. Tsuchiya, Mater. Sci. Eng. A 554, 53 (2012).

    Article  Google Scholar 

  40. C. Y. Cui and D. H. Ping, J. Alloys Compd. 471, 248 (2009).

    Article  Google Scholar 

  41. D. H. Ping, C. Y. Cui, Y. Yamabe-Mitarai, and F. X. Yin, Scr. Mater. 54, 1305 (2006).

    Article  Google Scholar 

  42. J. A. Feeney and M. J. Blackburn, Metall. Trans. 1, 3309 (1970).

    Article  Google Scholar 

  43. A. Biesiekierski, D. H. Ping, Y. Yamabe-Mitarai, and C. Wen, Mater. Design 59, 303 (2014).

    Article  Google Scholar 

  44. T. W. Duerig, G. T. Terlinde, and J. C. Williams, Metall. Trans. A 11, 1987 (1980).

    Article  Google Scholar 

  45. D. J. Lin, J. H. C. Lin, and C. P. Ju, Mater. Chem. Phys. 76, 191 (2002).

    Article  Google Scholar 

  46. Y. Yang, G. P. Li, G. M. Cheng, H. Wang, M. Zhang, F. Xu, and K. Yang, Scripta Mater. 58, 9 (2008).

    Article  Google Scholar 

  47. R. J. Talling, R. J. Dashwood, M. Jackson, and D. Dye, Acta Mater. 57, 1188 (2009).

    Article  Google Scholar 

  48. H. G. Paris, B. G. LeFevre, and E. A. Starke, Metall. Trans. A 7, 273 (1976).

    Article  Google Scholar 

  49. S. Hanada and O. Izumi, Metall. Trans. A 18, 265(1987).

    Article  Google Scholar 

  50. L. Li, W. Mei, H. Xing, X. L. Wang, and J. Sun, J. Alloy. Compd. 625, 188 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Żywicki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Żywicki, P., Ping, D.H., Abe, T. et al. Effect of Pd addition on the microstructure of Ti-30Nb alloy. Met. Mater. Int. 21, 617–622 (2015). https://doi.org/10.1007/s12540-015-4593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4593-5

Keywords

Navigation