Skip to main content
Log in

Review on ω Phase in Body-Centered Cubic Metals and Alloys

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

An ω phase with a primitive hexagonal crystal structure has been found to be a common metastable phase in body-centered cubic (bcc) metals and alloys. In general, ω phase precipitates out as a high density of nanoscale particles and can obviously strengthen the alloys; however, coarsening of the ω particles significantly reduces the alloy ductility. The ω phase has coherent interfacial structure with its bcc matrix phase, and its lattice parameters are \( {a_{{\omega }}} = \sqrt 2 \times {a_{\text{bcc}}} \) and \( {c_{{\omega }}} = \sqrt 3 /2 \times {a_{\text{bcc}}} \). The common {112}〈111〉-type twinning in bcc metals and alloys can be treated as the product of the ω → bcc phase transition, also known as the ω-lattice mechanism. The ω phase’s behavior in metastable β-type Ti alloys will be briefly reviewed first since the ω phase was first found in the alloy system, and then the existence of the ω phase in carbon steels will be discussed. Carbon plays a crucial role in promoting the ω formation in steel, and the ω phase can form a solid solution with various carbon contents. Hence, the martensitic substructure can be treated as an α-Fe matrix embedded with a high density of nanoscale ω-Fe particles enriched with carbon. The recognition of the ω phase in steel is expected to advance the understanding of the relationship between the microstructure and mechanical properties in bcc steels, as well as the behavior of martensitic transformations, twinning formation, and martensitic substructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.D. Frost, W.M. Parris, L.L. Hirsch, J.R. Doig, C.M. Schwartz, Trans. Am. Soc. Met. 46, 1056 (1954)

    Google Scholar 

  2. B.A. Hatt, J.A. Roberts, G.I. Williams, Nature 180, 1406 (1957)

    Article  Google Scholar 

  3. B.A. Hatt, J.A. Roberts, Acta Metall. 8, 575 (1960)

    Article  Google Scholar 

  4. B.S. Hickman, J. Mater. Sci. 4, 554 (1969)

    Article  Google Scholar 

  5. S.K. Sikka, Y.K. Vohra, R. Chidambaram, Prog. Mater. Sci. 27, 245 (1982)

    Article  Google Scholar 

  6. L.M. Hsiung, D.H. Lassila, Acta Mater. 48, 4851 (2000)

    Article  Google Scholar 

  7. J.M. Silcock, Acta Metall. 6, 481 (1958)

    Article  Google Scholar 

  8. S.L. Sass, Acta Metall. 17, 813 (1969)

    Article  Google Scholar 

  9. A.T. Balcerzak, S.L. Sass, Metall. Trans. 3, 1601 (1972)

    Article  Google Scholar 

  10. T.S. Kuan, R.R. Ahrens, S.L. Sass, Metall. Trans. A 6, 1767 (1975)

    Article  Google Scholar 

  11. B. Tang, Y.W. Cui, H. Chang, H. Kou, J. Li, L. Zhou, Comput. Mater. Sci. 53, 187 (2012)

    Article  Google Scholar 

  12. H.E. Cook, Acta Metall. 21, 1445 (1973)

    Article  Google Scholar 

  13. C.W. Dawson, S.L. Sass, Metall. Trans. 1, 2225 (1970)

    Article  Google Scholar 

  14. D.L. Moffat, D.C. Larbalestier, Metall. Trans. A 19, 1677 (1988)

    Article  Google Scholar 

  15. R.M. Wood, Acta Metall. 11, 907 (1963)

    Article  Google Scholar 

  16. Y.K. Vohra, E.S.K. Menon, S.K. Sikka, R. Krishnan, Acta Metall. 29, 457 (1981)

    Article  Google Scholar 

  17. H. Nishizawa, E. Sukedai, W. Liu, H. Hashimoto, Mater. Trans. JIM 39, 609 (1998)

    Google Scholar 

  18. G.K. Dey, R. Tewari, S. Banerjee, G. Jyoti, S.C. Gupta, K.D. Joshi, S.K. Sikka, Acta Mater. 52, 5243 (2004)

    Article  Google Scholar 

  19. J.O. Stiegler, J.T. Houston, M.L. Picklesimer, J. Nucl. Mater. 11, 32 (1964)

    Article  Google Scholar 

  20. B. Zhang, J. Wang, X. Wan, W. Chen, Scripta Metall. Mater. 30, 399 (1994)

    Article  Google Scholar 

  21. E. Sukedai, D. Yoshimitsu, H. Matsumoto, H. Hashimoto, M. Kiritani, Mater. Sci. Eng. A 350, 133 (2003)

    Article  Google Scholar 

  22. A.V. Dobromyslov, V.A. Elkin, Metall. Mater. Trans. A 30, 231 (1999)

    Article  Google Scholar 

  23. Y. Ohmori, T. Ogo, K. Nakai, S. Kobayashi, Mater. Sci. Eng. A 312, 182 (2001)

    Article  Google Scholar 

  24. E. Sukedai, M. Shimoda, H. Nishizawa, Y. Nako, Mater. Trans. 52, 324 (2011)

    Article  Google Scholar 

  25. J.A. Feeney, M.J. Blackburn, Metall. Trans. 1, 3309 (1970)

    Article  Google Scholar 

  26. D. de Fontaine, Acta Metall. 18, 275 (1970)

    Article  Google Scholar 

  27. F.R. Brotzen, E.L. Harmon, A.R. Troiano, J. Met. 7, 413 (1955)

    Google Scholar 

  28. D.H. Ping, Y. Mitarai, F.X. Yin, Scripta Mater. 52, 1287 (2005)

    Article  Google Scholar 

  29. D.H. Ping, C.Y. Cui, F.X. Yin, Y. Yamabe-Mitarai, Scripta Mater. 54, 1305 (2006)

    Article  Google Scholar 

  30. D.H. Ping, Y. Yamabe-Mitarai, C.Y. Cui, F.X. Yin, M.A. Choudhry, Appl. Phys. Lett. 93, 151911 (2008)

    Article  Google Scholar 

  31. C.Y. Cui, D.H. Ping, J. Alloy. Compd. 471, 248 (2009)

    Article  Google Scholar 

  32. A.B. Greninger, Nature 135, 916 (1935)

    Article  Google Scholar 

  33. J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39, 1 (1995)

    Article  Google Scholar 

  34. S. Mahajan, G.Y. Chin, Acta Metall. 21, 1353 (1973)

    Article  Google Scholar 

  35. A.W. Sleeswyk, Philos. Mag. 29, 407 (1974)

    Article  Google Scholar 

  36. S.Q. Wu, D.H. Ping, Y. Yamabe-Mitarai, T. Kitashima, G.P. Li, R. Yang, J. Alloy. Compd. 577, S423 (2013)

    Article  Google Scholar 

  37. S.Q. Wu, D.H. Ping, Y. Yamabe-Mitarai, W.L. Xiao, Y. Yang, Q.M. Hu, G.P. Li, R. Yang, Acta Mater. 62, 122 (2014)

    Article  Google Scholar 

  38. A.G. Crocker, Acta Metall. 10, 113 (1962)

    Article  Google Scholar 

  39. R.L. Patterson, C.M. Wayman, Acta Metall. 12, 1306 (1964)

    Article  Google Scholar 

  40. C.J. Barton, Acta Metall. 17, 1085 (1969)

    Article  Google Scholar 

  41. H.Y. Lee, H.W. Yen, H.T. Chang, J.R. Yang, Scripta Mater. 62, 670 (2010)

    Article  Google Scholar 

  42. D.H. Jack, K.H. Jack, Mater. Sci. Eng. 11, 1 (1973)

    Article  Google Scholar 

  43. D.H. Ping, W.T. Geng, Mater. Chem. Phys. 139, 830 (2013)

    Article  Google Scholar 

  44. G.R. Srinivasan, C.M. Wayman, Acta Metall. 16, 609 (1968)

    Article  Google Scholar 

  45. Y.Y. Song, D.H. Ping, F.X. Yin, X.Y. Li, Y.Y. Li, Mater. Sci. Eng. A 527, 614 (2010)

    Article  Google Scholar 

  46. B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Acta Mater. 59, 5845 (2011)

    Article  Google Scholar 

  47. C. Lerchbacher, S. Zinner, H. Leitner, Micron 43, 818 (2012)

    Article  Google Scholar 

  48. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, Metall. Mater. Trans. A 42, 3660 (2011)

    Article  Google Scholar 

  49. K. Nuttall, D. Faulkner, J. Nucl. Mater. 67, 131 (1977)

    Article  Google Scholar 

  50. A.F. Yedneral, M.D. Perkas, Fiz. Met. Metalloved. 33, 315 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehai Ping.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ping, D. Review on ω Phase in Body-Centered Cubic Metals and Alloys. Acta Metall. Sin. (Engl. Lett.) 27, 1–11 (2014). https://doi.org/10.1007/s40195-013-0014-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-013-0014-2

Keywords

Navigation