Skip to main content
Log in

Kinetic transition during the growth of proeutectoid ferrite in Fe-C-Mn-Si quaternary steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The kinetics of ferrite growth in Fe-0.1C-1.5Mn-0.94Si (mass pct) quaternary steel is investigated through the characterization of isothermal growth behavior, the thermodynamic prediction of kinetic boundary and the diffusional growth simulations using DICTRA. The change in microstructural evolution from slow growth to fast one is consistent with the calculated change of interface condition from the partitioning local equilibrium (PLE) to the negligible partitioning local equilibrium (NPLE). Compared with the DICTRA simulation, the observed growth kinetics of ferrite are between the calculated ones assuming local equilibrium (LE) and paraequilibrium (PE) criterions. At temperatures below the PLE/NPLE kinetic boundary, the observed growth behavior can be reasonably described by kinetic transition from PE to NPLE condition as isothermal time elapses, taking into account the critical velocity of interface at which trans-interface diffusion of subsitutional element permits the transition from PE to NPLE growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hultgren, Trans. ASM 39, 915 (1947).

    Google Scholar 

  2. M. Hillert, Internal Report. Swedish Institute for Metal Research, Stockhelm, Sweden (1953).

    Google Scholar 

  3. C. Zener, Trans. AIME. 167, 550 (1946).

    Google Scholar 

  4. M. Hillert. The Mechanism of Phase Transformations in Crystalline Solids, pp.231–247, Institute of Metals, London (1969).

    Google Scholar 

  5. J. S. Kirkaldy, Can. J. Phys. 36, 907 (1958).

    Article  CAS  Google Scholar 

  6. G. R. Purdy, D. H. Weichert, and J. S. Kirkaldy, Trans. TMS-AIME. 230, 1025 (1964).

    CAS  Google Scholar 

  7. D. E. Coates, Metall. Trans. 3, 1203 (1972).

    Article  CAS  Google Scholar 

  8. D. E. Coates, Metall. Trans. 4, 1077 (1973).

    Article  CAS  Google Scholar 

  9. D. E. Coates, Metall. Trans. 4, 2313 (1973).

    Article  CAS  Google Scholar 

  10. H. I. Aaronson and H. A. Domain, TMS-AIME. 236, 781 (1966).

    CAS  Google Scholar 

  11. J. R. Bradley and H. I. Aaronson, Metall. Mater. Trans. A, 12, 1730 (1981).

    Google Scholar 

  12. J. B. Gilmour, G. R. Purdy, and J. S. Kirkaldy. Metall. Trans. 3, 3213 (1972).

    Article  CAS  Google Scholar 

  13. M. Enomoto and H. I. Aaronson, Metall. Mater. Trans. A, 18, 1547 (1987).

    Article  Google Scholar 

  14. M. Enomoto, Trans. ISIJ 28, 826 (1988).

    Article  CAS  Google Scholar 

  15. H. K. D. H. Bhadeshia, Prog. Mater. Sci. 29, 321 (1985).

    Article  CAS  Google Scholar 

  16. C. R. Hutchinson, A. Fuchsmann, H. S. Zurob, and Y. Brechet, Scripta Mater. 50, 285 (2004).

    Article  CAS  Google Scholar 

  17. K. Oi, C. Lux, and G. R. Purdy, Acta Mater. 48, 2142 (2000).

    Article  Google Scholar 

  18. C. R. Hutchinson, H. S. Zurob, and Y. Brechet, Metall. Mater. Trans. A 37, 1711, (2006).

    Article  Google Scholar 

  19. H. S. Zurob, C. R. Hutchinson, A. Beche, G. R. Purdy, and Y. J. M. Brechet, Acta Mater. 56, 2203 (2008).

    Article  CAS  Google Scholar 

  20. T. Tanaka, H. I. Aaronson, and M. Enomoto, Metall. Mater. Trans. A 26, 561 (1995).

    Article  Google Scholar 

  21. H. Guo, G. R. Purdy, M. Enomoto, and H. I. Aaronson, Metall. Mater. Trans. A 37, 1721 (2006).

    Article  Google Scholar 

  22. C. Capdevila, J. Cornide, K. Tanaka, K. Nakanishi, and E. Urones-Garrote, Metall. Mater. Trans. A 42, 3719 (2011).

    Article  CAS  Google Scholar 

  23. Thermo-Calc Software, Stockholm Technology Park, http://www.thermocalc.com.

  24. G. Inden, Kinetics of Phase Transformation in Multi-Component Systems, (ed. V. Ghetta), p.113, Materials Issues for Generation IV systems, Springer (2008).

  25. L. A. Giannuzzi and F. A. Stevie, Micron. 30, 197 (1999).

    Article  Google Scholar 

  26. Y. S. Ha, J. G. Jeong, and Y. K. Lee, Korean. J. Met. Mater. 49, 917 (2011).

    CAS  Google Scholar 

  27. J. O. Andersson, T. Helander, L. Höglund, and P. Shi, Bo Sundman, Calphad 26, 273 (2002).

    Article  CAS  Google Scholar 

  28. J. Fridberg, L. E. Torndahl, and M. Hillert, Jernkontorets Ann. 153, 263 (1969).

    CAS  Google Scholar 

  29. G. H. Zhang, R. Wei, M. Enomoto, and D. W. Suh, Metall. Mater. Trans. A 43, 833 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woo Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, GH., Heo, YU., Song, EJ. et al. Kinetic transition during the growth of proeutectoid ferrite in Fe-C-Mn-Si quaternary steel. Met. Mater. Int. 19, 153–158 (2013). https://doi.org/10.1007/s12540-013-2003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-2003-4

Key words

Navigation