Skip to main content
Log in

Partition of manganese during the proeutectoid ferrite transformation in steel

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The late stages of the isothermal proeutectoid ferrite reaction in Fe-C-Mn have been investigated theoretically and experimentally. For the growth of grain-boundary allotriomorphs three temporal regimes must be recognized. In the early regime the grain-size is infinite with respect to the diffusion length of carbon so the growth is parabolic. The middle regime involves the cumulative impingement of the carbon fields from opposite sides of the grains. This regime ends as the carbon activity approaches substantial uniformity through the ferrite and austenite. The final stage involves the extremely slow approach of the manganese towards uniform activity as well. These temporal regimes must be further subdivided into high and low super saturation regions. In the low supersaturation region segregation of manganese must occur at all times, while in the high supersaturation region it must occur significantly only for late times. The growth rates and the diffusion profiles for the third temporal regime have been calculated on a local equilibrium model and compared with the metallographic and microprobe results for alloys within the two regions of supersaturation. The agreement between theory and experiment is in all cases good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Purdy, D. H. Weichert, and J. S. Kirkaldy:Trans. TMS-AIME, 1964, vol. 230, p. 1025.

    CAS  Google Scholar 

  2. J. B, Gilmour, G. R. Purdy, and J. S. Kirkaldy:Met. Trans., 1972, vol. 3, p. 1455.

    Article  CAS  Google Scholar 

  3. M. Hillert:Inst. of Metals, Monograph No. 33, 1961, p. 231.

  4. H. I. Aaronson, H. A. Domian, and G. M. Pound:Trans. TMS-AIME, 1966, vol. 236, p. 768.

    CAS  Google Scholar 

  5. J. B. Gilmour: Ph.D. Thesis, McMaster University, Hamilton, Ontario, September, 1970.

    Google Scholar 

  6. K. R. Kinsman and H. I. Aaronson:Transformation and Hardenability in Steels, Climax Molybdenum, Ann Arbor, 1967.

    Google Scholar 

  7. C. Strawstrom and M. Hillert:J. Iron Steel Inst., 1969, vol. 207, p. 77.

    Google Scholar 

  8. R. A. Tanzilli and R. W. Heckel:Trans. TMS-AIME, 1968, vol. 242, p. 2313.

    CAS  Google Scholar 

  9. C. Zener:J. Appl. Phys., 1949, vol. 20, p. 950.

    Article  CAS  Google Scholar 

  10. J. S. Kirkaldy and G. R. Purdy:Can. J. Phys., 1962, vol. 40, p. 208.

    CAS  Google Scholar 

  11. L. Kaufman, S. V. Radcliffe, and M. Cohen:Decomposition ofAustenite by Diffusional Processes, V. F. Zackay and H. I. Aaronson, eds., p. 342, Interscience, 1962.

  12. C. Wells and R. F. Mehl:AIME Trans., 1941, vol. 145, p. 315.

    Google Scholar 

  13. L. C. Brown and J. S. Kirkaldy:Trans. TMS-AIME, 1964, vol. 236, p. 223.

    Google Scholar 

  14. C. S. Smith:Trans. ASM, 1953, vol. 45, p. 533.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilmour, J.B., Purdy, G.R. & Kirkaldy, J.S. Partition of manganese during the proeutectoid ferrite transformation in steel. Metall Trans 3, 3213–3222 (1972). https://doi.org/10.1007/BF02661336

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661336

Keywords

Navigation