Skip to main content
Log in

Physical and mechanical properties of Al-Si-Ni eutectic alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Al-11.1wt%Si-4.2wt%Ni alloy was directionally solidified upward under different conditions, with different growth rates (V=4.60–243.33 μm/s) at a constant temperature gradient (G=5.82 K/mm) and with different temperature gradients (G=2.11–5.82 K/mm) at a constant growth rate (V=11.63 μm/s) by using a Bridgman type directional solidification furnace. The microstructure of directionally solidified Al-11.1wt%Si–4.2wt%Ni alloy was observed to be irregular plates of Al3Ni and Si within an α-Al matrix from quenched samples. The microhardness, tensile strength and electrical resistivity of the alloy were measured from directionally solidified samples. The dependency of the microhardness, tensile strength and electrical resistivity for directionally solidified Al-Si-Ni eutectic alloy on the solidification parameters were investigated and the relationships between them were experimentally obtained by using regression analysis. Additionally, the variation of electrical resistivity with temperature in the range of 300–825 K for the Al-Si-Ni eutectic cast alloy was also measured using a standard d.c. four-point probe technique. The enthalpy of fusion and specific heat for the same alloy were determined by a differential scanning calorimeter from the heating curve during the transformation from eutectic solid to eutectic liquid. The results obtained in the present work were compared with previous similar experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed, p.185, CRC Press, UK (1992).

    Google Scholar 

  2. P. K. Rohatgi, R. C. Sharma, and K. V. Prabhakar, Metall. Mater. Trans. A 6, 569 (1975).

    Article  Google Scholar 

  3. S. K. Seo, M. G. Cho, W. K. Choi, and H. M. Lee, J. Electron. Mater. 35, 1975 (2006).

    Article  CAS  Google Scholar 

  4. D. H. Kim, M. G. Cho, S. K. Seo, and H. M. Lee, J. Electron. Mater. 38, 39 (2009).

    Article  Google Scholar 

  5. M. G. Cho, S. K. Kang, D. Y. Shih, and H. M. Lee, J. Electron. Mater. 36, 1501 (2007).

    Article  CAS  Google Scholar 

  6. S. K. Kang, M. G. Cho, D. Y. Shih, S. K. Seo, and H. M. Lee, Proc. 58th Electronic Components and Technology Conf., p. 478, Piscataway NJ: IEEE, USA (2008).

    Book  Google Scholar 

  7. S. K. Seo, M. G. Cho, and H. M. Lee, J. Electron. Mater. 36, 1536 (2007).

    Article  CAS  Google Scholar 

  8. M. Abtew and G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000).

    Article  Google Scholar 

  9. M. Gündüz, H. Kaya, E. Çadlrll, and A. Özmen, Mater. Sci. Eng. A 369, 215 (2004).

    Article  Google Scholar 

  10. U. Böyük, N. Mara ll, H. Kaya, E. Çadlrll, and K. Keşlioǧlu, Appl. Phys. A-Mater. 95, 923 (2009).

    Article  Google Scholar 

  11. H. Kaya, E. Çadlrll, M. Gündüz, and A. Ülgen, J. Mater. Eng. and Perf. 12, 544 (2003).

    Article  CAS  Google Scholar 

  12. H. Kaya, U. Böyük, E. Çadlrll, and N. Maraşlı, Mater. Design 34, 707 (2012).

    Article  CAS  Google Scholar 

  13. V. Rudnev, D. Loveless, R. Cook, and M. Black, Handbook of Induction Heating, p.119, Markel Dekker Inc., USA. (2003).

    Google Scholar 

  14. F. M. Smiths, The Bell Sys. Tech. J. 37, 711 (1958).

    Google Scholar 

  15. F. Vnuk, M. Sahoo, R. Van De Merwe, and R. W. Smith, J. Mater. Sci. 14, 975 (1979).

    CAS  Google Scholar 

  16. F. Vnuk, M. Sahoo, D. Baragor, and R. W. Smith, J. Mater. Sci. 15, 2573 (1980).

    Article  CAS  Google Scholar 

  17. A. I. Telli and S. E. Klsakürek, Mater. Sci. Tech. 4, 153 (1988).

    Article  CAS  Google Scholar 

  18. E. Çadırlı, U. Böyük, H. Kaya, N. Maraşlı, K. Keşlioşlu, S. Akbulut, and Y. Ocak, J. Alloy. Compd. 470, 150 (2009).

    Article  Google Scholar 

  19. U. Böyük and N. Maraşlı, J. Alloy. Compd. 485, 264 (2009).

    Article  Google Scholar 

  20. E. Çadırlı, U. Böyük, S. Engin, H. Kaya, and N. Marasli, Kovove Mater. 47, 381 (2009).

    Google Scholar 

  21. H. Kaya, E. Çadlrll, U. Böyük, and N. Maraşlı, App. Surf. Sci. 255, 3071 (2008).

    Article  CAS  Google Scholar 

  22. H. Kaya, U. Böyük, E. Çadırlı Y. Ocak, S. Akbulut, K. Keşlioşlu, and N. Maraşlı, Met. Mater. Int. 14, 575 (2008).

    Article  CAS  Google Scholar 

  23. U. Böyük and N. Maraşlı, Mater. Chem. Phys. 119, 442 (2010).

    Article  Google Scholar 

  24. R. Brandt and G. Neuer, Int. J. Thermophys. 28, 1429 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uǧur Böyük.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böyük, U. Physical and mechanical properties of Al-Si-Ni eutectic alloy. Met. Mater. Int. 18, 933–938 (2012). https://doi.org/10.1007/s12540-012-6004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-6004-5

Key words

Navigation