Skip to main content
Log in

Mechanical, electrical, and thermal properties of the directionally solidified Bi-Zn-Al ternary eutectic alloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

A Bi-2.0Zn-0.2Al (wt%) ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified upwards at a constant growth rate (V = 18.4 μm/s) under different temperature gradients (G = 1.15–3.44 K/mm) and at a constant temperature gradient (G = 2.66 K/mm) under different growth rates (V = 8.3–500 μm/s) in a Bridgman-type directional solidification furnace. The dependence of microstructure parameter (λ) on the solidification parameters (G and V) and that of the microhardness (Hv) on the microstructure and solidification parameters were investigated. The resistivity (ρ) measurements of the studied alloy were performed using the standard four-point-probe method, and the temperature coefficient of resistivity (α) was calculated from the ρ-T curve. The enthalpy (ΔH) and the specific heat (C p ) values were determined by differential scanning calorimetry analysis. In addition, the thermal conductivities of samples, obtained using the Wiedemann-Franz and Smith-Palmer equations, were compared with the experimental results. The results revealed that, the thermal conductivity values obtained using the Wiedemann-Franz and Smith-Palmer equations for the Bi-2.0Zn-0.2Al (wt%) alloy are in the range of 5.2–6.5 W/Km and 15.2–16.4 W/Km, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gündüz and E. Çadırlı, Directional solidification of aluminium-copper alloys, Mater. Sci. Eng. A, 327(2002), No. 2, p. 167.

    Article  Google Scholar 

  2. B. Suárez-Peña and J. Asensio-Lozano, Infuence of Sr modification and Ti grain refirement on the morphology of Fe-rich precipitates in eutectic Al-Si die cast alloys, Scripta Mater., 54(2006), No. 9, p. 1543.

    Article  Google Scholar 

  3. M.J. Perricone and J.N. Dupont, Effect of composition on the solidification behavior of several Ni-Cr-Mo and Fe-Ni-Cr-Mo alloys, Metall. Mater. Trans. A, 37(2006), No. 4, p. 1267.

    Article  Google Scholar 

  4. H. Wu, Y.F. Han, and X.C. Chen, Study on microstructures and properties of Ti-Si eutectic alloys, Chin. J. Aeronaut., 16(2003), No. 1, p. 42.

    Article  Google Scholar 

  5. M.W. Wu and S.M. Xiong, Microstructure characteristics of the eutectics of die cast AM 60B magnesium alloy, J. Mater. Sci. Technol., 27(2011), No. 12, p. 1150.

    Article  Google Scholar 

  6. D. Barbier, M.X. Huang, and O. Bouaziz, A novel eutectic Fe-15 wt.% Ti alloy with an ultrafine lamellar structure for high temperature applications, Intermetallics, 35(2013), p. 41.

    Article  Google Scholar 

  7. A.W. Hassel, B.B. Rodriguez, S. Milenkovic, and A. Schneider, Fabrication of rhenium nanowires by selective etching of eutectic alloys, Electrochim. Acta, 51(2005), No. 5, p. 795.

    Article  Google Scholar 

  8. S. Farahany, A. Ourdjini, and M.H. Idris, The usage of computer-aided cooling curve thermal analysis to optimise eutectic refiner and modifier in Al-Si alloys, J. Therm. Anal. Calorim., 109(2012), No. 1, p. 105.

    Article  Google Scholar 

  9. M.D. Nave, A.K. Dahle, and D.H. St John, The role of zinc in the eutectic solidification of magnesium-aluminium-zinc alloys, [in] TMS Annual Meeting 2000, Nashville, 2000, p. 243.

    Google Scholar 

  10. Y.Y. Wu, X.F. Liu, J.G. Song, and X.F. Bian, A novel method to induce the precipitation of primary silicon in commercial near eutectic Al-Si alloys, Mater. Sci. Eng. A, 457(2007), No. 1–2, p. 109.

    Article  Google Scholar 

  11. X.W. Hu, K. Li, and Z.X. Min, Microstructure evolution and mechanical properties of Sn0.7Cu0.7Bi lead-free solders produced by directional solidification, J. Alloys Compd., 566(2013), p. 239.

    Article  Google Scholar 

  12. R.J. Contieri, E.S.N. Lopes, M.T. de La Cruz, A.M. Costa, C.R.M. Afonso, and R. Caram, Microstructure of directionally solidified Ti-Fe eutectic alloy with low interstitial and high mechanical strength, J. Cryst. Growth, 333(2011), No. 1, p. 40.

    Article  Google Scholar 

  13. L.R. Garcia, W.R. Osório, L.C. Peixoto, and A. Garcia, Mechanical properties of Sn-Zn lead-free solder alloys based on the microstructure array, Mater. Charact., 61(2010), No. 2, p. 212.

    Article  Google Scholar 

  14. W.R. Osorio and A. Garcia, Modeling dendritic structure and mechanical properties of Zn-Al alloys as a function of solidification conditions, Mater. Sci. Eng. A, 325(2002), No. 1–2, p. 103.

    Article  Google Scholar 

  15. G.A. Santos, C. de Moura Neto, W.R. Osório, and A. Garcia, Design of mechanical properties of a Zn27Al alloy based on microstructure dendritic array spacing, Mater. Des., 28(2007), No. 9, p. 2425.

    Article  Google Scholar 

  16. P.R. Goulart, J.E. Spinelli, N. Cheung, and A. Garcia, The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al-Fe alloys, Mater. Chem. Phys., 119(2010), No. 1–2, p. 272.

    Article  Google Scholar 

  17. M.V. Canté, J.E. Spinelli, N. Cheung, and A. Garcia, The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al-Ni alloys, Met. Mater. Int., 16(2010), No. 1, p. 39.

    Article  Google Scholar 

  18. P.R. Goulart, J.E. Spinelli, W.R. Osório, and A. Garcia, Mechanical properties as a function of microstructure and solidification thermal variables of Al-Si castings., Mater. Sci. Eng. A, 421(2006), No. 1–2, p. 245.

    Article  Google Scholar 

  19. J. Shen, Y.C. Liu, H.X. Gao, C. Wei, and Y.Q. Yang, Formation of bulk Ag3Sn intermetallic compounds in Sn-Ag lead-free solders in solidification, J. Electron. Mater., 34(2005), No. 12, p. 1591.

    Article  Google Scholar 

  20. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Mater. Sci. Eng. R, 49(2005), No. 1–2, p. 1.

    Article  Google Scholar 

  21. Y. Takaku, I. Ohnuma, R. Kainuma, Y. Yamada, Y. Yagi, Y. Nishibe, and K. Ishide, Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: Thermodynamic calculation, microstructure, and interfacial reaction, J. Electron. Mater., 35(2006), No. 11, p. 1926.

    Article  Google Scholar 

  22. J.N. Lalena, N.F. Dean, and M.W. Weiser, Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment, J. Electron. Mater., 31(2002), No. 11, p. 1244.

    Article  Google Scholar 

  23. J. Zhou, Y.S. Sun, and F. Xue, Properties of low melting point Sn-Zn-Bi solders, J. Alloys Compd., 397(2005), No. 1–2, p. 260.

    Article  Google Scholar 

  24. T. El-Ashram and R.M. Shalaby, Effect of rapid solidification and small additions of Zn and Bi on the structure and properties of Sn-Cu eutectic alloy, J. Electron. Mater., 34(2005), No. 2, p. 212.

    Article  Google Scholar 

  25. J. Glazer, Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review, J. Electron. Mater., 23(1994), No. 8, p. 693.

    Article  Google Scholar 

  26. S.W. Chen, H.J. Wu, Y.C. Huang, and W. Gierlotka, Phase equilibria and solidification of ternary Sn-Bi-Ag alloys, J. Alloys Compd., 497(2010), No. 1–2, p. 110.

    Article  Google Scholar 

  27. M. Şahin, The Directional Solidification of Binary and Ternary Metallic Alloys and Investigation the Physical Properties of Them [Dissertation], University of Nigde, Nidge, 2012.

    Google Scholar 

  28. F.M. Smiths, Measurement of sheet resistivities with the four-point probe, Bell Syst. Tech. J., 37(1958), No. 3, p. 711.

    Article  Google Scholar 

  29. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York, 1965, p. 178.

    Google Scholar 

  30. D.R. Poirier and G.H. Geiger, Transport Phenomena in Materials Processing, Minerals, Metals and Materials Society, Warrendale, PA, (1994), p. 196.

    Google Scholar 

  31. G.S. Kumar, G. Prasad, and R.O. Pohl, Experimental determinations of the Lorenz number, J. Mater. Sci., 28(1993), No. 16, p. 4261.

    Article  Google Scholar 

  32. S. Wannaparhun, Roles of Supercooling and Cooling Rates in the Microstructural Evolution of Copper-cobalt Alloys [Dissertation], University of Florida, Gainesville, 2005.

    Google Scholar 

  33. K.A. Jackson and J.D. Hunt, Lamellar and eutectic growth, Trans. Metall. Soc., 236(1966), p. 1129.

    Google Scholar 

  34. Y.C. Yan, H.S. Ding, Y.W. Kang, and J.X. Song, Microstructure evolution and mechanical properties of Nb-Si based alloy processed by electromagnetic cold crucible directional solidification, Mater. Des., 55(2014), p. 450.

    Article  Google Scholar 

  35. U. Böyük, N. Maraşlı, E. Çadırlı, H. Kaya, and K. Keşlioğlu, Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al-Cu-Ag eutectic alloy, Curr. Appl. Phys., 12(2012), No. 1, p. 7.

    Article  Google Scholar 

  36. J.L. Fan, X.Z. Li, Y.Q. Su, R.R. Chen, J.J. Gou, and H.Z. Fu, Dependency of microstructure parameters and microhardness on the temperature gradient for directionally solidified Ti-49Al alloy, Mater. Chem. Phys., 130(2011), No. 3, p. 1232.

    Article  Google Scholar 

  37. E. Çadırlı, U. Böyük, H. Kaya, and N. Maraşlı, Determination of mechanical, electrical and thermal properties of the Sn-Bi-Zn ternary alloy, J. Non Cryst. Solids, 357(2011), No. 15, p. 2876.

    Article  Google Scholar 

  38. X.W. Hu, K. Li, and F.R. Ai, Research on lamellar structure and micro-hardness of directionally solidified Sn-58Bi eutectic alloy, China Foundry, 9(2012), No. 4, p. 360.

    Google Scholar 

  39. J.T. Guo, C.M. Xu, X.H. Du, and H.Z. Fu, The effect of solidification rate on microstructure and mechanical properties of an eutectic NiAl-Cr(Mo)-Hf alloy, Mater. Lett., 58(2004), No. 26, p. 3233.

    Article  Google Scholar 

  40. F. Vnuk, M. Sahoo, D. Baragar, and R.W. Smith, Mechanical properties of Sn-Zn eutectic alloys, J. Mater. Sci., 15(1980), No. 10, p. 2573.

    Article  Google Scholar 

  41. J. Lapin and J. Mareček, Effect of growth rate on microstructure and mechanical properties of directionally solidified multiphase intermetallic Ni-Al-Cr-Ta-Mo-Zr alloy, Intermetallics, 14(2006), No. 10–11, p. 1339.

    Article  Google Scholar 

  42. U. Böyük and N. Maraşlı, The microstructure parameters and microhardness of directionally solidified Sn-Ag-Cu eutectic alloy, J. Alloys Compd., 485(2009), No. 1, p. 264.

    Article  Google Scholar 

  43. X.W. Hu, W.J. Chen, and B. Wu, Microstructure and tensile properties of Sn-1Cu lead-free solder alloy produced by directional solidification, Mater. Sci. Eng. A, 556(2012), p. 816.

    Article  Google Scholar 

  44. J. Lapin, L. Ondrúš, and M. Nazmy, Directional solidification of intermetallic Ti-46Al-2W-0.5Si alloy in alumina moulds, Intermetallics, 10(2002), No. 10, p. 1019.

    Article  Google Scholar 

  45. J.L. Fan, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Dependency of microhardness on solidification processing parameters and microstructure characteristics in the directionally solidified Ti-46Al-0.5W-0.5Si alloy, J. Alloys Compd., 504(2010), No. 1, p. 60.

    Article  Google Scholar 

  46. S. Engin, U. Böyük, H. Kaya, and N. Maraşlı, Directional solidification and physical properties measurements of the zinc-aluminium eutectic alloy, Int. J. Miner. Metall. Mater., 18(2011), No. 6, p. 659.

    Article  Google Scholar 

  47. X.W. Hu, S.M. Li, S.F. Gao, L. Liu, and H.Z. Fu, Research on lamellar structure and microhardness in directionally solidified ternary Sn-40.5Pb-2.5Sb eutectic alloy, J. Alloys Compd., 493(2010), No. 1–2, p. 116.

    Article  Google Scholar 

  48. C.Y. Ho, R.W. Powell, and P.E. Liley, Thermal conductivity of the elements, J. Phys. Chem. Ref. Data, 1(1972), No. 2, p. 279.

    Article  Google Scholar 

  49. S. Aksöz, Y. Ocak, N. Maraşlı, and K. Keşlioğlu, Thermal conductivity and interfacial energy of solid Bi solution in the Bi-Al-Zn eutectic system, Fluid Phase Equilib., 293(2010), No. 1, p. 32.

    Article  Google Scholar 

  50. S. Aksöz, N. Maraşlı, K Keşlioğlu, and F. Yıldız, Variations of thermal conductivity with temperature and composition of Zn in the Bi-[x] at.% Zn-2 at.% Al alloys, Thermochim. Acta, 547(2012), p. 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Şahin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, M., Çadırlı, E. Mechanical, electrical, and thermal properties of the directionally solidified Bi-Zn-Al ternary eutectic alloy. Int J Miner Metall Mater 21, 999–1008 (2014). https://doi.org/10.1007/s12613-014-1001-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-1001-y

Keywords

Navigation