Skip to main content
Log in

Elastic-plastic constitutive model for accurate springback prediction in hot press sheet forming

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present study investigates the effect of phase transformation plasticity on the springback of hot press formed parts. Employing an implicit finite element formulation to take phase transformations during rapid cooling from fully austenitic phase and their related thermo-mechanical behavior into account, two validations — (1) the loaded dilatometry problem which induces significant plastic deformation even at lower stress levels than the classical yield stress, and (2) the 2-D draw bending problem, which introduces high temperature forming and subsequent quenching — are presented and compared with known experimental data. The study showed that the magnitude of springback predicted by considering the phase transformation plasticity and the temperature change induced volumetric strain agreed well with date from experiments, while the results determined with the conventional elastic-plasticity theory in which only plastic deformation by external load was used, had considerable deviation for the springback profile after hot press forming. The negligible springback amount after hot press forming, which has been frequently reported in many experimental observations, is due to the stress relaxation by the addition of abnormal transformation plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bergman and M. A. Oldenbur, Int. J. Numer. Mech. Eng. 59, 1167 (2004).

    Article  Google Scholar 

  2. P. Åkerström, G. Bergman, and M. Oldenburg, Modelling Simul. Mater. Sci. Eng. 15, 105 (2007).

    Article  Google Scholar 

  3. P. Åkerström, B. Wikman, and M. Oldenburg, Modelling Simul. Mater. Sci. Eng. 13, 1291 (2005).

    Article  Google Scholar 

  4. H. Bok, M. G. Lee, H. D. Kim, and M. B. Moon, Met. Mater. Int. 16, 185 (2010).

    Article  CAS  Google Scholar 

  5. H. H. Bok, M. G. Lee, H. D. Kim, and M. B. Moon, Int. J. Mech. Sci. 53, 744 (2011).

    Article  Google Scholar 

  6. M. G. Lee, S. J. Kim, H. N. Han, and W. C. Jeong, Int. J. Plasticity 25, 1726 (2009).

    Article  CAS  Google Scholar 

  7. M. G. Lee, S. J. Kim, H. N. Han, and W. C. Jeong, Int. J. Mech. Sci. 51, 888 (2009).

    Article  Google Scholar 

  8. M. G. Lee, S. J. Kim, H. N. Han, and W. C. Jeong, Comp. Mater. Sci. 47, 556 (2009).

    Article  CAS  Google Scholar 

  9. G. W. Greenwood and R. H. Johnson, Proc. Roy. Soc. A 283, 403 (1965).

    Article  Google Scholar 

  10. J. B. Leblond, G. Mottet, and J. C. Devaux, J. Mech. Phys. Solids 34, 395 (1986).

    Article  Google Scholar 

  11. J. B. Leblond, Int. J. Plasticity 5, 573 (1989).

    Article  CAS  Google Scholar 

  12. M. Wolff, M. Bohm, M. Dalgic, and I. Hubler, Comp. Mater. Sci. 43, 108 (2008).

    Article  CAS  Google Scholar 

  13. H. N. Han, C. G. Lee, C. S. Oh, T. H. Lee, and S. J. Kim, Acta Mater. 52, 5203 (2004).

    Article  CAS  Google Scholar 

  14. S. L. Zang, G. Guo, S. Thuillier, and M. G. Lee, Int. J. Mech. Sci. 53, 425 (2011).

    Article  Google Scholar 

  15. J. S. Kirkaldy and D. Venugopalan, TMS-AIME, pp. 125–148, Warrendale, PA (1985).

  16. T. C. Nguyen and D. C. Weckman, Metall. Mater. Trans. B 37, 275 (2006).

    Article  Google Scholar 

  17. D. P. Koisten and R. E. Marburger, Acta Meter. 7, 59 (1939).

    Google Scholar 

  18. M. G. Lee, S. J. Kim, and H. N. Han, Int. J. Plasticity 26, 688 (2010).

    Article  CAS  Google Scholar 

  19. J. L. Chaboche, Int. J. Plasticity 2, 149 (1986).

    Article  Google Scholar 

  20. M. G. Lee, D. Kim, C. Kim, M. L. Wenner, and K. Chung, Int. J. Plasticity 21, 862 (2005).

    Google Scholar 

  21. ABAQUS, User’s manual for version 6.2.6, Hibbitt, Karlson & Sorensen Inc. (2006).

    Google Scholar 

  22. S. C. Yoon, M. B. Moon, and H. S. Kim, Korean J. Met. Mater. 48, 598 (2010).

    CAS  Google Scholar 

  23. B. A. Behrens, P. Olle, and C. Schaffner, Proc. of the 7th Int. Conf. and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, p.557, Interlaken (2008).

  24. J. Miettinen, Helsinki University of Technology: Report TKK-V-B113 (1995).

  25. H. N. Han and J. K. Lee, ISIJ 42, 200 (2002).

    Article  CAS  Google Scholar 

  26. Y. Tomota, M. Umemoto, N. Komatsubara, A. Hiramatsu, N. Nakajima, A. Moriya, T. Watanabe, S. Nanba, G. Anan, K. Kunishige, Y. Higo, and M. Miyahara, ISIJ 32, 343 (1992).

    Article  CAS  Google Scholar 

  27. G. R. Johnson and W. H. Cook, Proc. 7 th Int. Symp. On Ballistics. p.541, Hague, The Netherlands (1983).

  28. Y. Cho, Y. Im, G. Kim, and H. N. Han, Solid State Phenomena 118, 343 (2006).

    Article  CAS  Google Scholar 

  29. T. Altan, Stamping J. December 40 (2006).

  30. P. Hein, Proc. of The Int. Conf. on New Development in Sheet Metal Forming Technology, p. 163, Stuttgart, Germany (2006).

    Google Scholar 

  31. F. Barlat, J. J. Gracio, M. G. Lee, E. F. Rauch, and G. Vincze, Int. J. Plast. 27, 1309 (2011).

    Article  CAS  Google Scholar 

  32. J. W. Lee, M. G. Lee, and F. Barlat, Int. J. Plast. 29, 13 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Gyu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MG., Kim, SJ. Elastic-plastic constitutive model for accurate springback prediction in hot press sheet forming. Met. Mater. Int. 18, 425–432 (2012). https://doi.org/10.1007/s12540-012-3007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-3007-1

Key words

Navigation