Skip to main content

Anisotropic Plasticity During Non-proportional Loading

  • Chapter
  • First Online:
Advanced Theories for Deformation, Damage and Failure in Materials

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 605))

Abstract

Modeling of the elasto-plastic behavior of isotropic and anisotropic metals for applications to forming process simulations is discussed. In particular, the macroscopic flow theory of plasticity combined with the concept of isotropic hardening, in which a single monotonic stress-strain curve serves as a reference, is briefly reviewed. Selected non-proportional loading test procedures are described and the main deviations of the material behavior compared to an isotropic hardening response are discussed on the basis of underlying mechanisms of deformation at lower scale. The failure of isotropic hardening to accurately capture the behavior of a material subjected to non-linear strain paths demonstrates the need for more advanced hardening theories. Thus, theories based on kinematic hardening, possibly combined with distortional plasticity concepts, are succinctly reviewed. A pressure-dependent, distortional-only, plasticity approach recently proposed is discussed in more details and its relevance is illustrated with the prediction of stress-strain curves of advanced high strength steel sheets deformed along non-linear strain paths. A finite element (FE) implementation of this distortional plasticity model is outlined, with special attention to the formulation of the stress integration algorithm and the elasto-plastic tangent tensor. Application examples on several steel sheet samples subjected to various strain path changes are given for validation purpose. Simulations are conducted with a stand-alone (SA) code containing the constitutive equations only and a FE code with only one element. Comparisons between these predictions and experimental results demonstrate the accuracy of the model and the excellent performance of the FE implementation. Applications on advanced high strength steel (AHSS) sheet demonstrate why the pressure-dependency in the model is an important feature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anandarajah, A. (2010). Computational Methods in Elasticity and Plasticity: Solids and Porous Media. New York: Springer. https://doi.org/10.1007/978-1-4419-6379-6

  • Aretz, H. (2007). An advanced numerical differentiation scheme for plastic strain-rate computation. In AIP Conference Proceedings (Vol. 907, 151–156).

    Google Scholar 

  • Armstrong, P. J., & Frederick, C. O. (1966). A Mathematical Representation of the Multiaxial Bauschinger Effect (Vol. 731). Berkley, UK: Central Electricity Generating Board & Berkeley Nuclear Laboratories.

    Google Scholar 

  • Banabic, D., Barlat, F., Cazacu, O., & Kuwabara, T. (2020). Advances in anisotropy of plastic behaviour and formability of sheet metals. International Journal of Material Forming, 13(5), 749–787. https://doi.org/10.1007/s12289-020-01580-x

  • Barlat, F., & Lian, K. (1989). Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity, 5(1), 51–66.

    Google Scholar 

  • Barlat, F., Lege, D. J., & Brem, J. C. (1991). A six-component yield function for anisotropic materials. International Journal of Plasticity, 7(7), 693–712. https://doi.org/10.1016/0749-6419(91)90052-Z

  • Barlat, F., Brem, J. C., Yoon, J. W., Chung, K., Dick, R. E., Lege, D. J., Pourboghrat, F., Choi, S.-H., & Chu, E. (2003). Plane stress yield function for aluminum alloy sheets - Part 1: Theory. International Journal of Plasticity, 19(9), 1297–1319. https://doi.org/10.1016/S0749-6419(02)00019-0

  • Barlat, F., Duarte, J. M. F., Gracio, J. J., Lopes, A. B., & Rauch, E. F. (2003). Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample. International Journal of Plasticity, 19(8), 1215–1244. https://doi.org/10.1016/S0749-6419(02)00020-7

  • Barlat, F., Aretz, H., Yoon, J. W., Karabin, M. E., Brem, J. C., & Dick, R. E. (2005). Linear transfomation-based anisotropic yield functions. International Journal of Plasticity, 21(5), 1009–1039. https://doi.org/10.1016/j.ijplas.2004.06.004

  • Barlat, F., Gracio, J. J., Lee, M.-G., Rauch, E. F., & Vincze, G. (2011). An alternative to kinematic hardening in classical plasticity. International Journal of Plasticity, 27(9), 1309–1327. https://doi.org/10.1016/j.ijplas.2011.03.003

  • Barlat, F., Vincze, G., Grácio, J. J., Lee, M.-G., Rauch, E. F., & Tomé, C. N. (2014). Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels. International Journal of Plasticity, 58, 201–218. https://doi.org/10.1016/j.ijplas.2013.11.002

  • Barlat, F., Yoon, S.-Y., Lee, S.-Y., Wi, M.-S., & Kim, J.-H. (2020). Distortional plasticity framework with application to advanced high strength steel. International Journal of Solids and Structures, 202, 947–962. https://doi.org/10.1016/j.ijsolstr.2020.05.014

  • Bishop, J. F. W., & Hill, R. (1951). XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(327), 414–427. 1951. https://doi.org/10.1080/14786445108561065

  • Bulatov, V. V., Richmond, O., & Glazov, M. V. (1999). Atomistic dislocation mechanism of pressure-dependent plastic flow in aluminum. Acta Materialia, 47(12), 3507–3514. https://doi.org/10.1016/S1359-6454(99)00154-8

  • Cardoso, R. P. R., & Yoon, J. W. (2009). Stress integration method for a nonlinear kinematic/isotropic hardening model and its characterization based on polycrystal plasticity. International Journal of Plasticity, 25(9), 1684–1710. https://doi.org/10.1016/j.ijplas.2008.09.007

  • Cazacu, O., & Barlat, F. (2001). Generalization of Drucker’s yield criterion to orthotropy. Mathematics and Mechanics of Solids, 6(6), 613–630. https://doi.org/10.1177/108128650100600603

  • Cazacu, O., & Barlat, F. (2003). Application of the theory of representation to describe yielding of anisotropic aluminum alloys. International Journal of Engineering Science, 41(12), 1367–1385. https://doi.org/10.1016/S0020-7225(03)00037-5

  • Cazacu, O., & Barlat, F. (2004). A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. International Journal of Plasticity, 20(11), 2027–2045. https://doi.org/10.1016/j.ijplas.2003.11.021

  • Chaboche, J. L. (1977). Sur l’utilisation des variables d’état interne pour la description de la viscoplasticité cyclique avec endommagement. In Symposium Franco-Polonais de Rhéologie et Mécanique: Problèmes Non Linéaires de Méecanique (pp. 137–159). Cracovie.

    Google Scholar 

  • Chaboche, J. L. (2008). A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity, 24(10), 1642–1693. https://doi.org/10.1016/j.ijplas.2008.03.009

  • Choi, H., & Yoon, J. W. (2019). Stress integration-based on finite difference method and its application for anisotropic plasticity and distortional hardening under associated and non-associated flow rules. Computer Methods in Applied Mechanics and Engineering, 345, 123–160. https://doi.org/10.1016/j.cma.2018.10.031

  • Choi, J., Lee, J., Bae, G., Barlat, F., & Lee, M.-G. (2016). Evaluation of springback for DP980 S rail using anisotropic hardening models. JOM, 68(7), 1850–1857. https://doi.org/10.1007/s11837-016-1924-z

  • Choi, J. S., Lee, J. W., Kim, J.-H., Barlat, F., Lee, M. G., & Kim, D. (2015). Measurement and modeling of simple shear deformation under load reversal: Application to advanced high strength steels. International Journal of Mechanical Sciences, 98, 144–156. https://doi.org/10.1016/j.ijmecsci.2015.04.014

  • Chung, K., & Richmond, O. (1993). A deformation theory of plasticity based on minimum work paths. International Journal of Plasticity, 9(8), 907–920. https://doi.org/10.1016/0749-6419(93)90057-W

  • Dafalias, Y. F., & Popov, E. P. (1976). Plastic internal variables formalism of cyclic plasticity. Transactions ASME: Journal of Applied Mechanics, 43(4), 645–651. https://doi.org/10.1115/1.3423948

  • Dunne, F., & Petrinic, N. (2005). Introduction to Computational Plasticity. Oxford: Oxford University Press.

    Google Scholar 

  • Feigenbaum, H. P., & Dafalias, Y. F. (2007). Directional distortional hardening in metal plasticity within thermodynamics. International Journal of Solids and Structures, 44(22–23), 7526–7542. https://doi.org/10.1016/j.ijsolstr.2007.04.025

  • Feng, Z., Yoon, S.-Y., Choi, J.-H., Barrett, T. J., Zecevic, M., Barlat, F., & Knezevic, M. (2020). A comparative study between elasto-plastic self-consistent crystal plasticity and anisotropic yield function with distortional hardening formulations for sheet metal forming. Mechanics of Materials, 148, 103422. https://doi.org/10.1016/j.mechmat.2020.103422

  • François, M. (2001). A plasticity model with yield surface distortion for non proportional loading. International Journal of Plasticity, 17(5), 703–717. https://doi.org/10.1016/S0749-6419(00)00025-5

  • Ha, J., Lee, M.-G., & Barlat, F. (2013). Strain hardening response and modeling of EDDQ and DP780 steel sheet under non-linear strain path. Mechanics of Materials, 64, 11–26. https://doi.org/10.1016/j.mechmat.2013.04.004

  • Hasegawa, T., & Yakou, T. (1980). Effects of stress reversal and thermal recovery on stress vs strain behavior in aluminum. Scripta Metallurgica, 14(10), 1083–1087. https://doi.org/10.1016/0036-9748(80)90210-0

  • Hasegawa, T., Yakou, T., & Karashima, S. (1975). Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium. Materials Science and Engineering, 20, 267–276. https://doi.org/10.1016/0025-5416(75)90159-7

  • He, W. J., Zhang, S. H., & Song, H. W. (2013). An extended homogenous yield function based anisotropic hardening model for description of anisotropic hardening behavior of materials. International Journal of Mechanical Sciences, 77, 343–355. https://doi.org/10.1016/j.ijmecsci.2013.05.018

  • Hershey, A. V. (1954). The plasticity of an isotropic aggregate of anisotropic face-centered cubic crystals. J0urnal of Applied Mechanics, 21(3), 241–249. https://doi.org/10.1115/1.4010900.

  • Hibbitt, H., Karlsson, B., & Sorensen, P. (2011). Abaqus user subroutine reference manual version 6.10. Dassault Systemes Simulia Corp.: USA.

    Google Scholar 

  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033), 281–297.

    Google Scholar 

  • Hockett, J. E., & Sherby, O. D. (1975). Large strain deformation of polycrystalline metals at low homologous temperatures. Journal of the Mechanics and Physics of Solids, 23(2), 87–98. https://doi.org/10.1016/0022-5096(75)90018-6

  • Hollomon, J. H. (1945). Tensile deformation. Transactions of the Metallurgical Society of AIME, 162, 268–290.

    Google Scholar 

  • Holmedal, B. (2019). Bauschinger effect modelled by yield surface distortions. International Journal of Plasticity, 123, 86–100. https://doi.org/10.1016/j.ijplas.2019.07.009

  • Jeong, Y., Barlat, F., Tomé, C. N., & Wen, W. (2017). A comparative study between micro- and macro-mechanical constitutive models developed for complex loading scenarios. International Journal of Plasticity, 93, 212–228. https://doi.org/10.1016/j.ijplas.2016.07.015

  • Jung, J. (1981). A note on the influence of hydrostatic pressure on dislocations. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 43(4), 1057–1061. https://doi.org/10.1080/01418618108239511

  • Jung, J., Hur, Y. C., Jun, S., Lee, H.-S., Kim, B.-M., & Kim, J. H. (2019). Constitutive modeling of asymmetric hardening behavior of transformation-induced plasticity steels. International Journal of Automotive Technology, 20, 19–30. https://doi.org/10.1007/s12239-019-0124-6

  • Kitayama, K., Tomé, C. N., Rauch, E. F., Gracio, J. J., & Barlat, F. (2013). A crystallographic dislocation model for describing hardening of polycrystals during strain path changes. Application to low carbon steels. International Journal of Plasticity, 46, 54–69 (2013). https://doi.org/10.1016/j.ijplas.2012.09.004

  • Krieg, R. D. (1975). A practical two surface plasticity theory. Transactions ASME: Journal of Applied Mechanics, 42(3), 641–646. https://doi.org/10.1115/1.3423656

  • Kurtyka, T., & Życzkowski, M. (1996). Evolution equations for distortional plastic hardening. International Journal of Plasticity, 12(2), 191–213. https://doi.org/10.1016/S0749-6419(96)00003-4

  • Kuwabara, T. (2013). Advanced material testing in support of accurate sheet metal forming simulations. In The 11th International Conference on Numerical Methods in Industrial Forming Processes: Numiform 2013 (Vol. 1532, pp. 69–80). https://doi.org/10.1063/1.4806810

  • Lee, J.-Y., Lee, J.-W., Lee, M.-G., & Barlat, F. (2012). An application of homogeneous anisotropic hardening to springback prediction in pre-strained u-draw/bending. International Journal of Solids and Structures, 49(25), 3562–3572. https://doi.org/10.1016/j.ijsolstr.2012.03.042

  • Lee, S.-Y., Kim, J.-M., Kim, J.-H., & Barlat, F. (2020). Validation of homogeneous anisotropic hardening model using non-linear strain path experiments. International Journal of Mechanical Sciences, 183, 105769. https://doi.org/10.1016/j.ijmecsci.2020.105769

  • Lee, S.-Y., Yoon, S.-Y., Kim, J.-H., & Barlat, F. (2020). Calibration of distortional plasticity framework and application to U-draw bending simulations. ISIJ International, 60(12), 2927–2941. https://doi.org/10.2355/isijinternational.ISIJINT-2020-391

  • Liao, J., Xue, X., Lee, M.-G., Barlat, F., Vincze, G., & Pereira, A. B. (2017). Constitutive modeling for path-dependent behavior and its influence on twist springback. International Journal of Plasticity, 93, 64–88. https://doi.org/10.1016/j.ijplas.2017.02.009

  • Logan, R. W., & Hosford, W. F. (1980). Upper-bound anisotropic yield locus calculations assuming 111-pencil glide. International Journal of Mechanical Sciences, 22(7), 419–430. https://doi.org/10.1016/0020-7403(80)90011-9

  • Lopes, A. B., Barlat, F., Gracio, J. J., Duarte, J. F. F., & Rauch, E. F. (2003). Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear. International Journal of Plasticity, 19(1), 1–22.

    Google Scholar 

  • Ludwik, P. (1909) Fließvorgänge bei einfachen Beanspruchungen. In Elemente der Technologischen Mechanik (pp. 11–35). Springer.

    Google Scholar 

  • Mróz, Z. (1967). On the description of anisotropic workhardening. Journal of the Mechanics and Physics of Solids, 15(3), 163–175. https://doi.org/10.1016/0022-5096(67)90030-0

  • Ortiz, M., & Popov, E. P. (1983). Distortional hardening rules for metal plasticity. Journal of Engineering Mechanics, 109(4), 1042–1057. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:4(1042)

  • Ortiz, M., & Simo, J. C. (1986). An analysis of a new class of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering, 23(3), 353–366. https://doi.org/10.1002/nme.1620230303

  • Park, S. C., Park, T., Koh, Y., Seok, D. Y., Kuwabara, T., Noma, N., & Chung, K. (2013). Spring-back prediction of MS1470 steel sheets based on a non-linear kinematic hardening model. Transactions of Materials Processing, 22(6), 303–309. https://doi.org/10.5228/KSTP.2013.22.6.303

  • Peeters, B., Bacroix, B., Teodosiu, C., Van Houtte, P., & Aernoudt, E. (2001a) Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain paths: II. TEM observations of dislocation sheets in an if steel during two-stage strain paths and their representation in terms of dislocation densities. Acta Materialia, 49(9), 1621–1632. https://doi.org/10.1016/S1359-6454(01)00067-2

  • Peeters, B., Seefeldt, M., Teodosiu, C., Kalidindi, S. R., Van Houtte, P., & Aernoudt, E. (2001b) Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain paths: I. An integrated model based on substructure and texture evolution, and its prediction of the stress-strain behaviour of an if steel during two-stage strain paths. Acta Materialia, 49(9), 1607–1619. https://doi.org/10.1016/S1359-6454(01)00066-0

  • Peeters, B., Kalidindi, S. R., Teodosiu, C., Houtte, P. V., & Aernoudt, E. (2002). A theoretical investigation of the influence of dislocation sheets on evolution of yield surfaces in single-phase b.c.c. polycrystals. Journal of the Mechanics and Physics of Solids, 50(4), 783–807. https://doi.org/10.1016/S0022-5096(01)00094-1

  • Prager, W. (1949). Recent developments in the mathematical theory of plasticity. Journal of Applied Physics, 20(3), 235–241. https://doi.org/10.1063/1.1698348

  • Qin, J., Holmedal, B., Zhang, K., & Hopperstad, O. S. (2017). Modeling strain-path changes in aluminum and steel. International Journal of Solids and Structures, 117, 123–136. https://doi.org/10.1016/j.ijsolstr.2017.03.032

  • Qin, J., Holmedal, B., & Hopperstad, O. S. (2018). A combined isotropic, kinematic and distortional hardening model for aluminum and steels under complex strain-path changes. International Journal of Plasticity, 101, 156–169. https://doi.org/10.1016/j.ijplas.2017.10.013

  • Qin, J., Holmedal, B., & Hopperstad, O. S. (2019). Experimental characterization and modeling of aluminum alloy AA3103 for complex single and double strain-path changes. International Journal of Plasticity, 112, 158–171. https://doi.org/10.1016/j.ijplas.2018.08.011

  • Qin, J. S., Holmedal, B., & Hopperstad, O. (2017). Modelling of strain-path transients in commercially pure aluminium. Materials Science Forum, 877, 662–667. https://doi.org/10.4028/www.scientific.net/MSF.877.662

  • Rauch, E. F., Gracio, J. J., Barlat, F., & Vincze, G. (2011). Modelling the plastic behaviour of metals under complex loading conditions. Modelling and Simulation in Materials Science and Engineering, 19(3), 035009. https://doi.org/10.1088/0965-0393/19/3/035009

  • Richmond, O., & Spitzig, W. A. (1980). Pressure dependence and dilatancy of plastic flow. In Proceedings ASME IUTAM Conference (pp. 377–386).

    Google Scholar 

  • Simo, J. C., & Hughes, T. J. R. (2006). Computational Inelasticity. Interdisciplinary Applied Mathematics (Vol. 7). Springer Science & Business Media.

    Google Scholar 

  • Spitzig, W. A., & Richmond, O. (1984). The effect of pressure on the flow stress of metals. Acta Metallurgica, 32(3), 457–463. https://doi.org/10.1016/0001-6160(84)90119-6

  • Spitzig, W. A., Sober, R. J., & Richmond, O. (1975). Pressure dependence of yielding and associated volume expansion in tempered martensite. Acta Metallurgica, 23(7), 885–893. https://doi.org/10.1016/0001-6160(75)90205-9

  • Spitzig, W. A., Sober, R. J., & Richmond, O. (1976). The effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory. Metallurgical Transactions A, 7(10), 1703–1710. https://doi.org/10.1007/BF02817888

  • Starman, B., Halilovič, M., Vrh, M., & Štok, B. (2014). Consistent tangent operator for cutting-plane algorithm of elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 272, 214–232. https://doi.org/10.1016/j.cma.2013.12.012

  • Sun, L., & Wagoner, R. H. (2013). Proportional and non-proportional hardening behavior of dual-phase steels. International Journal of Plasticity, 45, 174–187. https://doi.org/10.1016/j.ijplas.2013.01.018

  • Swift, H. W. (1952). Plastic instability under plane stress. Journal of the Mechanics and Physics of Solids, 1(1), 1–18.

    Google Scholar 

  • Teodosiu, C., & Hu, Z. (1998). Microstructure in the continuum modelling of plastic anisotropy. In J. V. Carstensen, T. Leffers, T. Lorentzen, O. B. Petersen, B. F. S. Sørensen, & G. Winkler (Eds.), Nineteenth risø International Symposium on Materials Science 1998 (pp. 149–168).

    Google Scholar 

  • Tozawa, Y. (1978). Plastic deformation behavior under conditions of combined stress. In D. Koistinen, & N. M. Wang, (Eds.), Mechanics of Sheet Metal Forming (pp. 81–110). Boston: Springer. https://doi.org/10.1007/978-1-4613-2880-34

  • Vincze, G., Barlat, F., Rauch, E. F., Tomé, C. N., Butuc, M. C., & Grácio, J. J. (2013). Experiments and modeling of low carbon steel sheet subjected to double strain path changes. Metallurgical and Materials Transactions A, 44(10), 4475–4479.

    Google Scholar 

  • Voce, E. (1948). The relationship between stress and strain for homogeneous deformation. The Journal of the Institute of Metals, 74, 537–562.

    Google Scholar 

  • Voyiadjis, G. Z., & Foroozesh, M. (1990). Anisotropic distortional yield model. Transactions ASME: Journal of Applied Mechanics, 57(3), 537–547. https://doi.org/10.1115/1.2897056

  • Wi, M.-S. (2021). Characterization and simulation of the plastic behavior of steels subject to complex loading histories. Ph.D. Thesis, Pohang University of Science and Technology.

    Google Scholar 

  • Wi, M. S., Lee, S. Y., Kim, J. H., Kim, J. M., & Barlat, F. (2020). Experimental and theoretical plasticity analyses of steel materials deformed under a nonlinear strain path. International Journal of Mechanical Sciences, 182, 105770. https://doi.org/10.1016/j.ijmecsci.2020.105770

  • Yoon, S.-Y., Lee, S.-Y., & Barlat, F. (2020). Numerical integration algorithm of updated homogeneous anisotropic hardening model through finite element framework. Computer Methods in Applied Mechanics and Engineering, 372, 113449. https://doi.org/10.1016/j.cma.2020.113449

  • Yoon, S.-Y., Barlat, F., Lee, S.-Y., Kim, J.-H., Wi, M.-S., & Kim, D.-J. (2022). Journal of Materials Processing Technology, 302, 117494. https://doi.org/10.1016/j.jmatprotec.2022.117494

  • Yoshida, F., & Uemori, T. (2002). A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. International Journal of Plasticity, 18(5–6), 661–686. https://doi.org/10.1016/S0749-6419(01)00050-X

  • Zaman, S. B., Barlat, F., & Kim, J.-H. (2018). Deformation-induced anisotropy of uniaxially prestrained steel sheets. International Journal of Solids and Structures, 134, 20–29.

    Google Scholar 

Further readings

  • Barlat, F., Cazacu, O., Życzowski, M., Banabic, D., & Yoon, J.-W. (2004). Continuum scale simulation of engineering materials: Fundamentals-microstructures-process applications. In D. Raabe, F. Roters, F. Barlat, & L.-Q. Chen (Eds.), Yield Surface Plasticity and Anisotropy (pp. 145–177). Wiley.

    Google Scholar 

  • Barlat, F., Kuwabara, T., & Korkolis, Y. P. (2018). Anisotropic plasticity and application to plane stress. In H. Altenbach, & A. Öchsner (Eds.), Encyclopedia of Continuum Mechanics (pp. 1–22). Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-53605-6. https://doi.org/10.1007/978-3-662-53605-6225-1

  • Besson, J., Cailletaud, G., Chaboche, J.-L., & Forest, S. (2009). Non-linear Mechanics of Materials. Solid Mechanics and Its Applications (Vol. 167). Springer Science & Business Media.

    Google Scholar 

  • Cazacu, O., & Revil-Baudard, B. (2020) Plasticity of Metallic Materials: Modeling and Applications to Forming. Elsevier.

    Google Scholar 

  • Itskov, M. (2007). Tensor Algebra and Tensor Analysis for Engineers. Springer.

    Google Scholar 

  • Lemaitre, J., & Chaboche, J.-L. (1994). Mechanics of Solid Materials. Cambridge University Press.

    Google Scholar 

  • Malvern, L. E. (1969). Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.

    Google Scholar 

  • Skrzypek, J. J., & Ganczarski, A. W. (2015). Mechanics of Anisotropic Materials. Springer.

    Google Scholar 

  • Ziegler, H. (1959). A modification of prager’s hardening rule. Quarterly of Applied Mathematics, 17(1), 55–65.

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to POSCO for financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Barlat .

Editor information

Editors and Affiliations

Appendix

Appendix

State Variable Evolution Equations

The yield condition is given above by combining Eq. (2.37) with (2.38) or (2.39). The development of the state variable evolution equations is explained in the original article (Barlat et al. 2020), and are only listed below.

  1. 1.

    Transformed deviators: A number of transformed stress deviators are introduced to describe cross-loading effects

    $$\begin{aligned} \textbf{s}_{C}=(\boldsymbol{\upsigma }^\prime \boldsymbol{:} \hat{\textbf{h}}) \hat{\textbf{h}} \end{aligned}$$
    (2.59)
    $$\begin{aligned} \textbf{s}_{O}=\boldsymbol{\upsigma }^\prime -\textbf{s}_{C} \end{aligned}$$
    (2.60)
    $$\begin{aligned} \textbf{s}_{X}=\xi _{C}\left( \frac{1-g_{C}}{g_{L}}\right) \textbf{s}_{O} \end{aligned}$$
    (2.61)
    $$\begin{aligned} \textbf{s}_{L}=\frac{1}{\xi _{L}\left( g_{L}-1\right) +1} \textbf{s}_{C}+\frac{1}{g_{L}} \textbf{s}_{O} \end{aligned}$$
    (2.62)
  2. 2.

    Cross-loading-modified effective stress: The captioned effective stress is defined as

    $$\begin{aligned} \bar{\xi }(\boldsymbol{\upsigma }^\prime )=\left[ \bar{\phi }\left( \textbf{s}_{L}\right) ^{p}+\bar{\phi }\left( \textbf{s}_{X}\right) ^{p}\right] ^{1 / p} \end{aligned}$$
    (2.63)
  3. 3.

    Strain path change amplitude: These parameters correspond to the severity of strain path change, i.e., 1 for monotonic, 0 for pure cross-loading and –1 for reverse loading

    $$\begin{aligned} \cos \chi =\hat{\textbf{h}}: \hat{\boldsymbol{\upsigma }}^\prime \;\;\;\;\cos \chi ^\prime =\hat{\textbf{h}^\prime }: \hat{\boldsymbol{\upsigma }}^\prime \end{aligned}$$
    (2.64)
  4. 4.

    Microstructure deviators: These are the tensors, both set equal to the stress deviator at the first step, which account for a smooth evolution of the microstructure

    $$\begin{aligned} \frac{d \hat{\textbf{h}}^{\prime }}{d \bar{\varepsilon }}=\lambda ^{\prime } k^{\prime }\left( \hat{\boldsymbol{\upsigma }}^\prime -\cos \chi ^{\prime } \hat{\textbf{h}}^{\prime }\right) \end{aligned}$$
    (2.65)
    $$\begin{aligned} \frac{d \hat{\textbf{h}}}{d \bar{\varepsilon }}=\lambda k\left( \cos \chi ^{\prime 2 \xi _{R}}+\cos \chi ^{2 \xi _{R}}\right) (\hat{\boldsymbol{\upsigma }}^\prime -\cos \chi \hat{\textbf{h}}) \end{aligned}$$
    (2.66)
  5. 5.

    Reverse loading: Reverse loading is described in the yield condition by the two state variables, \(f_-\) and \(f_+\), which are function of two other variables \(g_-\) and \(g_+\)

    $$\begin{aligned} f_{\omega }=\sqrt{\frac{3}{8}}\left\{ \frac{1}{g_{\omega }^{q}}-1\right\} ^{\frac{1}{q}} \end{aligned}$$
    (2.67)

    where \(\omega \) stands for the symbols − or \(+\). The evolution equations are expressed with the variables \(g_-\) and \(g_+\)

    $$\begin{aligned} \begin{aligned} \frac{d g_{-}}{d \bar{\varepsilon }}&=\frac{1+\lambda }{2}\left\{ k_{1} \frac{1-g_{-}}{g_{-}^{\xi _{B}^{\prime }}}\left[ 1-\left( \cos ^{2} \chi \right) ^{\xi _{B}}\right] \right. \\&\left. +k_{2}\left( k_{3} \frac{\sigma _{\textrm{y}}}{\sigma (\bar{\varepsilon })}-g_{-}\right) \left( \cos ^{2} \chi \right) ^{\xi _{B}} \right\} +\frac{1-\lambda }{2}\left\{ k_{1} \frac{1-g_{-}}{g_{-}^{\xi _{B}^{\prime }}}\right\} \end{aligned} \end{aligned}$$
    (2.68)
    $$\begin{aligned} \begin{aligned} \frac{d g_{+}}{d \bar{\varepsilon }}&=\frac{1-\lambda }{2}\left\{ k_{1} \frac{1-g_{+}}{g_{+}^{\xi _{B}^{\prime }}}\left[ 1-\left( \cos ^{2} \chi \right) ^{\xi _{B}}\right] \right. \\&\left. +k_{2}\left( k_{3} \frac{\sigma _{\textrm{y}}}{\sigma (\bar{\varepsilon })}-g_{+}\right) \left( \cos ^{2} \chi \right) ^{\xi _{B}}\right\} +\frac{1+\lambda }{2}\left\{ k_{1} \frac{1-g_{+}}{g_{+}^{\xi _{B}^{\prime }}}\right\} \end{aligned} \end{aligned}$$
    (2.69)
  6. 6.

    Permanent softening: Permanent softening should be maximum for strain reversals

    $$\begin{aligned} g_{P}^{\prime }=g_{P}^{*}-\left( g_{P}^{*}-g_{3}^{*}\right) \left| \hat{\boldsymbol{\upsigma }}^\prime \boldsymbol{:} \hat{\textbf{h}}^{*}\right| ^{2 \xi _{S}} \end{aligned}$$
    (2.70)
    $$\begin{aligned} \frac{d g_{3}}{d \bar{\varepsilon }}=k_{5} g_{S}\left( k_{4}-g_{3}\right) \end{aligned}$$
    (2.71)
    $$\begin{aligned} \frac{d g_{S}}{d \bar{\varepsilon }}=-k_{S}\left[ 1-\left| \hat{\boldsymbol{\upsigma }}^\prime \boldsymbol{:} \hat{\textbf{h}}^{*}\right| \right] g_{S} \end{aligned}$$
    (2.72)
  7. 7.

    Cross-loading contraction: The contraction and recovery of the yield surface are controlled by the next equations, respectively

    $$\begin{aligned} \frac{d g_{C}}{d \bar{\varepsilon }}=k_{C}\left( C-g_{C}\right) \end{aligned}$$
    (2.73)
    $$\begin{aligned} \frac{d g_{C}}{d \bar{\varepsilon }}=k_{C}^{\prime } \frac{1-g_{C}}{g_{C}^{\xi _{C}}} \end{aligned}$$
    (2.74)
  8. 8.

    Latent hardening: Finally, latent hardening is defined by

    $$\begin{aligned} \frac{d g_{L}}{d \bar{\varepsilon }}=k_{L}\left[ \frac{\sigma _{r}(\bar{\varepsilon })-\sigma _{r}(0)}{\sigma _{r}(\bar{\varepsilon })}\left( \sqrt{L+(1-L) \cos ^2 \chi ^{\prime \xi _{L}^{\prime }}}-1\right) +1-g_{L}\right] \end{aligned}$$
    (2.75)

Finite Difference Method

The first and second-order numerical derivatives of yield function are acquired based on the finite difference method (FDM) in a scaled stress space (Aretz 2007). The main advantages of the numerical derivatives for FE-implementation are that (1) the challenges for FE-implementation of advanced plasticity models are alleviated, (2) the singularities that appear in analytical derivatives do not require a special treatment, and (3) FDM is applicable to shell and solid elements corresponding to plane and 3D stress states, respectively. The scaled (normalized) stress space expands the utility of the FDM step size (\(\updelta \hat{\upsigma }\)) for various stress scales. As remarked in Choi and Yoon (2019), the midpoint rule (central difference method) accelerates the algorithm convergence and higher order of truncated error.

For the sake of the brevity, in this context, the stress tensor is expressed in the form of Voigt’s notation (vectorized form).

$$\begin{aligned} \left[ \boldsymbol{\upsigma }\right] =\left[ \begin{array}{lll} \sigma _{11} &{} \sigma _{12} &{} \sigma _{13} \\ \sigma _{12} &{} \sigma _{22} &{} \sigma _{23} \\ \sigma _{13} &{} \sigma _{23} &{} \sigma _{33} \end{array}\right] =\left\{ \begin{array}{c} \sigma _{11} \\ \sigma _{22} \\ \sigma _{33} \\ \sigma _{23} \\ \sigma _{13} \\ \sigma _{12} \end{array}\right\} =\left\{ \begin{array}{l} \sigma _{1} \\ \sigma _{2} \\ \sigma _{3} \\ \sigma _{4} \\ \sigma _{5} \\ \sigma _{6} \end{array}\right\} \end{aligned}$$
(2.76)

A stress tensor is scaled by the normalization factor (\(\xi \)).

$$\begin{aligned} \hat{\boldsymbol{\upsigma }}=\xi \boldsymbol{\upsigma }=\frac{\boldsymbol{\upsigma }}{\sqrt{\boldsymbol{\upsigma }: \boldsymbol{\upsigma }}} \end{aligned}$$
(2.77)

The first-order derivative is obtained based on a midpoint rule

$$\begin{aligned} \frac{\partial \bar{\sigma }(\hat{\boldsymbol{\upsigma }})}{\partial \hat{\sigma }_{i}} \cong \frac{\bar{\sigma }\left( \hat{\sigma }_{i}+\delta \hat{\sigma }, \hat{\sigma }_{j}\right) -\bar{\sigma }\left( \hat{\sigma }_{i}-\delta \hat{\sigma }, \hat{\sigma }_{j}\right) }{2(\delta \hat{\sigma })} \end{aligned}$$
(2.78)

where \(i\ne {j}\) and \(\{i, j\} \in \{1,2,3,4,5,6\}\). It is worth noting that the step size for the finite difference method (\(\delta \hat{\sigma }\)) is assumed to be constant for all components. \(\delta \hat{\sigma }=10^{-6}\) is recommended for the first-order derivative. The normalization factor does not influence the values of the first derivative because the yield function derivative is a homogeneous function of first degree.

$$\begin{aligned} \frac{\partial \bar{\sigma }(\hat{\boldsymbol{\upsigma }})}{\partial \hat{\boldsymbol{\upsigma }}}=\frac{\partial \xi \bar{\sigma }(\boldsymbol{\upsigma })}{\partial \xi \boldsymbol{\upsigma }}=\frac{\partial \bar{\sigma }(\boldsymbol{\upsigma })}{\partial \boldsymbol{\upsigma }} \end{aligned}$$
(2.79)

The second-order derivative is defined differently based on the components, i.e., (1) diagonal (\(i=j\)) and (2) off-diagonal (\(i\ne {j}\)) and symmetry according to Schwarz’ theorem.

$$\begin{aligned} \begin{aligned}&\frac{\partial ^{2} \bar{\sigma }(\hat{\boldsymbol{\upsigma }})}{\partial \hat{\sigma }_{i} \partial \hat{\sigma }_{j}}=\frac{\bar{\sigma }_{+}-2 \bar{\sigma }(\hat{\boldsymbol{\upsigma }})+\bar{\sigma }_{-}}{(\delta \hat{\sigma })^{2}}&\boldsymbol{\textrm{IF}} \quad i=j \\&\frac{\partial ^{2} \bar{\upsigma }(\hat{\boldsymbol{\upsigma }})}{\partial \hat{\upsigma }_{\textrm{i}} \partial \hat{\upsigma }_{\textrm{j}}}=\frac{\bar{\upsigma }_{++}-\bar{\upsigma }_{+-}-\bar{\upsigma }_{-+}+\bar{\upsigma }_{--}}{(\delta \hat{\upsigma })^{2}}&\boldsymbol{\textrm{ELSE}} \end{aligned} \end{aligned}$$
(2.80)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barlat, F., Yoon, SY. (2023). Anisotropic Plasticity During Non-proportional Loading. In: Altenbach, H., Ganczarski, A. (eds) Advanced Theories for Deformation, Damage and Failure in Materials. CISM International Centre for Mechanical Sciences, vol 605. Springer, Cham. https://doi.org/10.1007/978-3-031-04354-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04354-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04352-9

  • Online ISBN: 978-3-031-04354-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics