Skip to main content

Advertisement

Log in

Recent trends and variability of extreme rainfall indices over Lebna basin and neighborhood in the last 40 years

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract  

Change in extreme climatic events, especially rainfall, is an important sign of climate change. Characterizing the evolution of extreme rainfall helps to identify and quantify the effect of climate change on agricultural, social, economic, and environmental sectors. This study aims to assess aspects related to the changing trends of the rainfall extremes in Lebna basin, situated in Cap Bon, Tunisia, in a Mediterranean context. The temporal variation of annual maximum daily rainfall (AMDR) and annual rainy days number (ARDN) were assessed using data from 1980 to 2019 at eleven rain gauges stationed throughout Lebna watershed and neighborhood. The non-parametric Mann–Kendall test and the Sen’s slope estimator were used to examine the trend. Also, four break tests were applied to validate results found by the previous tests and to locate breakpoints if they exist. The assessment of AMDR tendency marked a dominant upward trend in all studied rain gauges, but statistically not significant, excluding one observation station (Takelsa ribereau), wherever an increase is recorded with 0.816 mm.year−1 at p = 0.1. Also, break tests can’t lead to detect a precise break date for this variable. Results of annual rainy days number underline a significant increase of the ADRN for the assumed significance levels (0.001, 0.01, 0.05, and 0.1) for 54.4% of chosen rain gauges (Bge Sidi Abdelmonem aval, Hir Lebna rojat, Menzel Tmim ctv, Wadi Labid bge, Takelsa Ribereau, and Gazolinage factory stations). The rise magnitude ranges between 0.2 and 1.2 day.year−1. Identically, break tests (Pettitt test, Hubert segmentation test, Lee Heghinian’s Bayesian method, and Statistic U of Buishand) detect an increase for annual rainy days number (ARDN) in the same rain gauge, and a breakpoint is essentially identified in 2002.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahokpossi Y (2018) Analysis of the rainfall variability and change in the Republic of Benin (West Africa). Hydrol Sci J63(15–16):2097–2123. https://doi.org/10.1080/02626667.2018.1554286

    Article  Google Scholar 

  • Baig MRI, Shahfahad NMW, Ansari AH, Ahmad S, Rahman A (2021) Spatio-temporal analysis of precipitation pattern and trend using standardized precipitation index and Mann-Kendall test in coastal Andhra Pradesh. Earth Syst Environ. https://doi.org/10.1007/s40808-021-01262-w

    Article  Google Scholar 

  • Ben Khelifa W, Chargui S (2021) Drought impact on rainfall and water storage in Tunisian semi-arid context. IJWSET VI(1):95–104

    Google Scholar 

  • Bouklikha A, Habi M, Elouissi A, Hamoudi S (2021) Annual, seasonal and monthly rainfall trend analysis in the Tafna watershed, Algeria. Appl Water Sci 11https://doi.org/10.1007/s13201-021-01404-6

  • Bougara H, Baba Hamed K, Borgemeister C, Tischbein B, Kumar N (2020) Analyzing trend and variability of rainfall in the Tafna basin (Northwestern Algeria). Atmosphere 11:347. https://doi.org/10.3390/atmos11040347

    Article  Google Scholar 

  • Boyer JF (2002). Software Khronostat chronological series of statistical analysis. IRD UR2, Programe 21 FRIEND AOC, Team UMRGBE Hydrology, University of Montpellier II, Ecole des Mines de Paris.

  • Buishand TA (1984) Tests for detecting a shift in the mean of hydrological time series. J Hydrol 58:51–69

    Article  Google Scholar 

  • Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58:11–27

    Article  Google Scholar 

  • Chargui S, Jaberi A, Cudennec C, Lachaal F, Calvez R, Slimani M (2018) Statistical detection and no-detection of rainfall change trends and breaks in semiarid Tunisia-50+ years over the Merguellil agro-hydro-climatic reference basin. Arab J Geosci 11(675) 10.1007–018–4001–9

  • Chargui S, Cudennec C, Slimani M, Pouget JC, Aouissi J (2009) Robust and flexible hydroinformatics to account for rainfall space-time variability in a data-sparse region. IAHS Publ 333:295–301

    Google Scholar 

  • Caloiero T, Filice E, Coscarelli R, Pellicone G (2020) A homogeneous dataset for rainfall trend analysis in the calabria region (Southern Italy). Water. https://doi.org/10.3390/w12092541

    Article  Google Scholar 

  • Cipolla G, Francipane A, Noto LV (2020) Classification of extreme rainfall for Mediterranean region by means of atmospheric circulation patterns and reanalysis data. Water Resour Manage 34:3219–3235. https://doi.org/10.1007/s11269-020-02609-1

    Article  Google Scholar 

  • Cudennec C, Pouget JC, Chargui S, Boudhraa H, Jaffrezic A, Slimani M (2009) Geomorphology-structured hydroinformatics for downward basin modelling with flexible accounting for net rainfall variability. IAHS Publ 331:254–260

    Google Scholar 

  • Gader K, Gara A, Vanclooster M, Khlifi SM (2020) Drought assessment in a south Mediterranean transboundary catchment. Hydrol Sci J 65(8):1300–1315. https://doi.org/10.1080/02626667.2020.1747621

    Article  Google Scholar 

  • Gadedjisso-Tossou A, Adjegan KI, Kablan AKM (2021) Rainfall and temperature trend analysis by Mann-Kendall test and significance for rainfed cereal yields in northern Togo. Sci 3:17. https://doi.org/10.3390/sci3010017

    Article  Google Scholar 

  • Gentilucci M, Barbieri M, Lee HS, Zardi D (2019) Analysis of rainfall trends and extreme precipitation in the Middle Adriatic Side, Marche region (Central Italy). Water 11:1948. https://doi.org/10.3390/w11091948

    Article  Google Scholar 

  • Ghenim AN, Megnounif A (2016) Variability and trend of annual maximum daily rainfall in Northern Algeria. Int J Geophys. https://doi.org/10.1155/2016/6820397

    Article  Google Scholar 

  • Hare W (2003) Assessment of knowledge on impacts of climate change - contribution to the specification of Art. 2 of the UNFCCC.

  • Hubert P, Carbonnel JP (1987) Approche statistique de l’aridification de l’Afrique de l’Ouest. J Hydrol 95:165–183

    Article  Google Scholar 

  • Hubert P, Carbonnel JP, Chaouche A (1989) Segmentation des séries hydrométéorologiques - Application à des séries de précipitations et de débits de l’Afrique de l’Ouest. J Hydrol 110:349–367

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation measures, Charles Griffin.

  • Kingumbi A, Bargaoui Z, Hubert P (2005) Investigation of the rainfall variability in central Tunisia. Hydrol Sci J 50:493–508. https://doi.org/10.1623/hysj.50.3.493.65027

    Article  Google Scholar 

  • Lee AFS, Heghinian SM (1977) A shift of the mean level in sequence of independent normal random variables: a Bayesian approach. Teehnometries 19:503–506

    Google Scholar 

  • L’hote Y, Mahé G, Some B, Triboulet JP (2002) Analysis of a Sahelian annual rainfall index from 1896 to 2000; the drought continues. Hydrol Sci J 47(4):563–572

    Article  Google Scholar 

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Młyński D, Cebulska M, Wałęga A (2018) Trends, variability, and seasonality of maximum annual daily precipitation in the upper Vistula Basin, Poland. Atmosphere 9:313. https://doi.org/10.3390/atmos9080313

  • Nouaceur Z, Murarescu O (2016) Rainfall variability and trend analysis of annual rainfall in North Africa. Int J Atmos Sci. https://doi.org/10.1155/2016/7230450

    Article  Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Statist 28:126–135

    Article  Google Scholar 

  • Pingale SM, Khare D, Jat MK, Adamowski J (2014) Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos Res 138:73–90

    Article  Google Scholar 

  • Porto de Carvalho JR, Assad ED, de Oliveira AF, Pinto HS (2014) Annual maximum daily rainfall trends in the Midwest, southeast and southern Brazil in the last 71 years. Weather Clim Extrem. https://doi.org/10.1016/j.wace.2014.10.001

    Article  Google Scholar 

  • Salman SA, Shahid S, Ismail T, Ahmed K, Chung ES, Wang XJ (2018) Characteristics of annual and seasonal trends of rainfall and temperature in Iraq Asia-Pacific. JAS. https://doi.org/10.1007/s13143-018-0073-4

    Article  Google Scholar 

  • Schiling J, Hertig E, Tramblay Y, Scheffran J (2020) Climate change vulnerability, water resources and social implications in North Africa. Reg Environ Change 20:15. https://doi.org/10.1007/s10113-020-01597-7

    Article  Google Scholar 

  • Seager R, Liu H, Kushnir Y, Osborn TJ, Simpson IR, Kelley CR, Nakamura J (2020) Mechanisms of winter precipitation variability in the European-Mediterranean associated with the North Atlantic Oscillation. J Clim 33:7179–7196. https://doi.org/10.1175/JCLI-D-20-0011.1

    Article  Google Scholar 

  • Slimani M, Cudennec C, Feki H (2007) Structure du gradient pluviométrique de la transition Méditerranée-Sahara en Tunisie : determinants géographiques et saisonnalité. Hydrol Sci J 52:1088–1102

    Article  Google Scholar 

  • Zerouali B, Al-Ansari N, Chettih M, Mohamed M, Abda Z, Santos CAG, Zerouali B, Elbeltagi A (2021) An enhanced innovative triangular trend analysis of rainfall based on a spectral approach. Water. https://doi.org/10.3390/w13050727

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh Chargui.

Ethics declarations

Funding

The authors have no relevant financial.

Conflict of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of data and material

Not applicable.

Additional information

Responsible Editor: Fethi Lachaal

This article is part of the Topical Collection on Water Quality, Global Changes and Groundwater Responses

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chargui, S., Zarrour, R., El Mouaddeb, R. et al. Recent trends and variability of extreme rainfall indices over Lebna basin and neighborhood in the last 40 years. Arab J Geosci 15, 203 (2022). https://doi.org/10.1007/s12517-021-09334-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-09334-y

Keywords

Navigation