Skip to main content

Advertisement

Log in

The susceptibility analysis of landslide using bivariate and multivariate modeling techniques in western Algeria: case of Fergoug watershed (Beni-Chougrane Mountains)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Landslides are considered to be the most important and frequent natural events causing considerable damage. Many areas in Algeria and elsewhere in the world are affected by this type of phenomenon. Located in the Tellian Chain of the Northwest of Algeria, Fergoug watershed is largely affected by several landslide events that led to (siltation of dams and roads, bridges, and buildings destruction). The damage cost amounted to hundreds of thousands of dollars and sometimes exceeds the reaction of the authorities concerned. In order to help local authorities in their prevention approach, a landslide sensitivity map has been realized using different models: (i) the frequency ratio (FR), (ii) the linear multiple regressions (MLR), and (iii) the information value model (IVM). The landslide inventory was established and includes 142 landslides and 10 conditioning factors (slope angle, slope aspect, profile curvature, distance to rivers, roads, faults, earthquakes, land use, lithology, and precipitation). These factors were prepared from several multisource data sources. The results were validated using the operating characteristic of the receiver and the areas under the curves obtained using the methods FR, IVM, and MLR are respectively 0.87, 0.83, and 0.81. It is proposed that the landslide susceptibility map produced from the FR model be more useful for the study area. The results demonstrate that for the frequency ratio model, the very high, high, moderate, low, and very low susceptibility classes are 58%, 24%, 5%, 2%, and 9.5%, respectively. Almost 73 landslides events are situated along the Fergoug River. These results could reveal the relative importance of different factors in explaining landslides and help engineers plan land use planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arora M, Das Gupta A, Gupta R (2004) An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalaya. Int J Remote Sens 25:559–572

    Article  Google Scholar 

  • Balsubramani K, Kumaraswamy K (2013) Application of geospatial technology andinformation value technique in landslide hazard zonation mapping: a case study of Giri Valley, Himachal Pradesh. Disaster Advances 6:38–47

    Google Scholar 

  • Benouar D, Aoudia A, Maouche S, Meghraoui M (1994) The 18 August 1994 Mascara (Algeria) earthquake — a quick-lookreport. Terra Nova 6:634–637

    Article  Google Scholar 

  • Bezzeghoud M, Buforn ER (1999) Source parameters of the 1992 Melilla (Spain, Mw: 4.8), Alhoceima (Morocco, Mw: 5.8) and 1994 Mascara (Algeria, Mw: 5.7) earthquakes and seismotectonics implications, Bulletin of Seismologic Society of America. 89 359–372

  • Caiyan WU, Jianping Q (2009) Relationship between landslides and lithology in the Three Gorges Reservoir area based on GIS and Information Value Model. Higher Education Press and Springer New York 4(2):165–170

    Google Scholar 

  • Cánovas JB, Stoffel M, Martín-Duque JF, orona C, Lucía A, Bodoque JM, Montgomery DR (2017) Gully evolution and geomorphic adjustments of badlands to reforestation. Scientific reports 7(1):1-8.

  • Champatiray P (2000) Personalization of cost effective methodology for landslide hazard zonation using RS and GIS: IIRS initiative. In: Roy P, Van Westen C, Jha V, Lakhera R (eds) Natural disasters and their mitigation; remote sensing and geographical information system perspectives. Indian Institute of Remote Sensing, Dehradun, India, pp 95–101

  • Champatiray P, Dimri S, Lakhera R, Sati S (2007) Fuzzy based methods for landslide hazard assessment in active seismic zone of Himalaya. Landslides 4:101–110

    Article  Google Scholar 

  • Chattoraj J, Gendelman O, Ciamarra MP, Procaccia I (2019) Oscillatory instabilities in frictional granular matter. Phys Rev Lett 123(9):098003

    Article  Google Scholar 

  • Chen W, Shahabi H, Shirzadi A, Hong H, Akgun A, Tian Y, Liu J, Li A-XZS (2019) Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull Eng Geol Environ 78(6):4397–4419

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263

    Google Scholar 

  • Cui Y, Cheng D, Choi CE, Jin W, Lei Y, Kargel JS (2019) The cost of rapid and haphazard urbanization: lessons learned from the Freetown landslide disaster. Landslides 16(6):1167–1176

    Article  Google Scholar 

  • Dalloni M (1936) carte géologique de Mascara, service de la carte géologique de l’Algérie, n°: 212

  • Dikau R (1999) The recognition of landslides. In Floods and Landslides: Integrated Risk Assessment (pp. 39-44). Springer, Berlin, Heidelberg

  • Erzin Y, Cetin T (2013) The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions. Comput Geosci 51:305–313

    Article  Google Scholar 

  • Felicísimo ÁM, Cuartero A, Remondo J, Quirós E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10(2):175–189

    Article  Google Scholar 

  • Frattini P, Crosta GB, Rossini M, Allievi J (2018) Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements. Landslides 15(6):1053–1070

    Article  Google Scholar 

  • Ghimire M (2011) Landslide occurrence and its relation with terrain factors in the Siwalik Hills, Nepal: case study of susceptibility assessment in three basins. Nat Hazards 56(1):299–320

    Article  Google Scholar 

  • Gholami M, Ghachkanlu EN, Khosravi K, Pirasteh S (2019) Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method. J Earth System Science 128(2):42

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112(1-2):42–66

    Article  Google Scholar 

  • Gzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1-2):166–184

    Article  Google Scholar 

  • Hadji R, Chouabi A, Gadri L, Raïs K, Hamed Y, Boumazbeur A (2016) Application of linear indexing model and GIS techniques for the slope movement susceptibility modeling in Bousselam upstream basin, Northeast Algeria. Arab J Geosci 9(3):192

    Article  Google Scholar 

  • Hong H, Pourghasemi HR, Pourtaghi ZS (2016) Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology, 259, 105-118.

  • Huang MH, Fielding EJ, Liang C, Milillo P, Bekaert D, Dreger D, Salzer J (2017) Coseismic deformation and triggered landslides of the 2016 Mw 6.2 Amatrice earthquake in Italy. Geophys Res Lett 44(3):1266–1274

    Article  Google Scholar 

  • Hungr O (2018) Some methods of landslide hazard intensity mapping. In Landslide risk assessment (pp. 215-226). Routledge

  • Javier and Kumar. (2019) Frequency ratio landslide susceptibility estimation in a tropical mountain region, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W8, 2019 Gi4DM 2019 – GeoInformation for Disaster Management, 3–6 September 2019, Prague, Czech

  • Jotic M, Vujanic V, Mitrovic P, Jelisavac B, Zarkovic Z (2018) Specific features of the landslide “Bracin” at the chainage km: 750+ 500 of E-75 international road through Yugoslavia. In Landslides (pp. 589-596)

  • Kanungo D, Arrora M, Sarkar S, Gupta R (2009) Landslide Susceptibility Zonation (LSZ) mapping — a review. J South Asia Disaster Studies 2:81–105

    Google Scholar 

  • Karim Z, Hadji R, Hamed Y (2019) GIS-based approaches for the landslide susceptibility prediction in Setif Region (NE Algeria). Geotech Geol Eng 37(1):359–374

    Article  Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Bull Seismol Soc Am 95:406–421

    Article  Google Scholar 

  • Kuriakose SL, Jetten VG, Van Westen CJ, Sankar G, Van Beek LPH (2008) Pore water pressure as a trigger of shallow landslides in the Western Ghats of Kerala, India: some preliminary observations from an experimental watershed. Phys Geogr 29(4):374–386

    Article  Google Scholar 

  • Lari S, Frattini P, Crosta GB (2014) A probabilistic approach for landslide hazard analysis. Eng Geol 182:3–14

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4(1):33–41

    Article  Google Scholar 

  • Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50(6):847–855

    Article  Google Scholar 

  • Li G, West AJ, Densmore AL, Hammond DE, Jin Z, Zhang F et al (2016) Connectivity of earthquake-triggered landslides with the fluvial network: Implications for landslide sediment transport after the 2008 Wenchuan earthquake. J Geophys Res Earth Surf 121(4):703–724

    Article  Google Scholar 

  • Liu JG, Mason PJ, Clerici N, Chen S, Davis A, Miao F, Deng H, Liang L (2004) Landslide hazard assessment in the Three Gorges area of the Yangtze river using ASTER imagery: Zigui–Badong. Geomorphology 61(1-2):171–187

    Article  Google Scholar 

  • Mahdadi F, Boumezbeur A, Hadji R, Kanungo DP, Zahri F (2018) GIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras province, NE Algeria. Arab J Geosci 11(17):476

    Article  Google Scholar 

  • Manchar N, Benabbas C, Hadji R, Bouaicha F, Grecu F (2018) Landslide susceptibility assessment in Constantine Region (NE Algeria) by means of statistical models. Studia Geotechnica et Mechanica 40(3):208–219

    Article  Google Scholar 

  • Marc O, Hovius N, Meunier P, Uchida T, Hayashi S (2015) Transient changes of landslide rates after earthquakes. Geology 43(10):883–886

    Article  Google Scholar 

  • Mekerta B, Semcha A, Rahmani F, Troalen JP (2008) Erosion spécifique et caractérisation de la résistance au cisaillement des sédiments du barrage de Fergoug. Xèmes Journées Nationales Génie Civil–Génie Côtier 1:14–15

    Google Scholar 

  • Mosavi A, Ozturk P, Chau KW (2018) Flood prediction using machine learning models: Literature review. Water 10(11):1536

    Article  Google Scholar 

  • Mousavi SZ, Kavian A, Soleimani K, Mousavi SR, Shirzadi A (2011) GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomatics, Natural Hazards and Risk 2(1):33–50

    Article  Google Scholar 

  • Mugagga F, Kakembo V, Buyinza M (2012) Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides. Catena 90:39–46

    Article  Google Scholar 

  • Nichol J, Wong MS (2005) Satellite remote sensing for detailed landslide inventories using change detection and image fusion. Int J Remote Sens 26(9):1913–1926

    Article  Google Scholar 

  • Nsengiyumva JB, Luo G, Amanambu AC, Mind'je R, Habiyaremye G, Karamage F, Ochege FU, Mupenzi C (2019) Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Sci Total Environ 659:1457–1472

    Article  Google Scholar 

  • Onagh M, Kumra VK, Rai PK (2012) Landslide susceptibility mapping in a part of Uttarkashi district (India) by multiple linear regression method. Int J Geol, Earth Environ Sci 2(2):102–120

    Google Scholar 

  • Palucis MC, Ulizio TP, Fuller B, Lamb MP (2018) Flow resistance, sediment transport, and bedform development in a steep gravel-bedded river flume. Geomorphology 320:111–126

    Article  Google Scholar 

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68(5):1443–1464

    Article  Google Scholar 

  • Pasang S, and Kubíček P (2018) Information value model based landslide susceptibility mapping at Phuentsholing, Bhutan. In Proceedings of the 21st AGILE Conference, Lund, Sweden (pp. 12-15).

  • Passang S, Kubíček P (2018) Information value model based landslide susceptibility mapping at Phuentsholing. Bhutan, AGILE

  • Pereira S, Zezere J, Bateira C (2012) Assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Nat Hazards Earth Syst Sci 12:979–988

    Article  Google Scholar 

  • Petley DN, Higuchi T, Petley DJ, Bulmer MH, Carey J (2005) Development of progressive landslide failure in cohesive materials. Geology 33(3):201–204

    Article  Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Model Softw 25(6):747–759

    Article  Google Scholar 

  • Refas S, Safa A, Zaagane M, Souidi Z, Hamimed A (2019) Evaluation of seismic hazard using tectonic fault data: case of Beni-Chougrane Mountains (Western Algeria). Min Sci 26

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth-Science Reviews180, 60-91.

  • Roback K, Clark MK, West AJ, Zekkos D, Li G, Gallen SF, Chamlagain D, Godt JW (2018) The size, distribution, and mobility of landslides caused by the 2015 Mw7. 8 Gorkha earthquake, Nepal. Geomorphology 301:121–138

    Article  Google Scholar 

  • Robbins JC (2016) A probabilistic approach for assessing landslide-triggering event rainfall in Papua New Guinea, using TRMM satellite precipitation estimates. J Hydrol 541:296–309

    Article  Google Scholar 

  • Roose E, Arabi M, Brahamia K, Chebbani R, Mazour M, Morsli B (1993) Érosion en nappe et ruissellement en montagne méditerranéenne algérienne. Cahiers Orstom, série pédologie 28(2):289–308

    Google Scholar 

  • Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet JP (2018) Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology 301:10–20

    Article  Google Scholar 

  • Shipway ICF, Hackney GA, Baynes FJ (2015) Semi-quantitative risk assessment in road design

  • Solaimani K, Mousavi SZ, Kavian A (2013) Landslide susceptibility mapping based on frequency ratio and logistic regression models. Arab J Geosci 6(7):2557–2569

    Article  Google Scholar 

  • Stark CP, Hovius N (2001) The characterization of landslide size distributions. Geophys Res Lett 28(6):1091–1094

    Article  Google Scholar 

  • Thiery Y, Maquaire O, Fressard M (2014) Application of expert rules in indirect approaches for landslide susceptibility assessment. Landslides 11(3):411–424

    Article  Google Scholar 

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology, 92(1-2), 38-59.

  • Thiery Y, Terrier M, Colas B, Fressard M, Maquaire O, Grandjean G, Gourdier S (2020) Improvement of landslide hazard assessments for regulatory zoning in France: STATE–OF–THE-ART perspectives and considerations. Int J Disaster Risk Reduct 47:101562

    Article  Google Scholar 

  • Thomas G (1985) Géodynamique d'un bassin intramontagneux: Le Bassin du Bas-Chelif occidental (Algérie) durant le mio-plio-quaternaire (Doctoral dissertation)

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65(2):167–184

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3-4):112–131

    Article  Google Scholar 

  • Van Westen CJ, Alkema D, Damen MCJ, Kerle N, Kingma NC (2011) Multi-hazard risk assessment. United Nations University–ITC School on Disaster Geoinformation Management.Veh G, Cotton F, Korup O (2019) Effects of finite source rupture on landslide triggering: the 2016 M w 7.1 Kumamoto earthquake. Solid Earth 10(2):463–486

    Google Scholar 

  • Veh G, Korup O, von Specht S, Roessner S, Walz A (2019) Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat. Clim. Chang. 9, 379–383. doi: 10.1038/s41558-019-0437-5

  • Voumard J, Caspar O, Derron MH, Jaboyedoff M (2013) Dynamic risk simulation to assess natural hazards risk along roads. Nat Hazards Earth Syst Sci 13(11):2763–2777

    Article  Google Scholar 

  • Xu C, Xu X, Dai F, Xiao J, Tan X, Yuan R (2012) Landslide hazard mapping using GIS and weight of evidence model in Qingshui river watershed of 2008 Wenchuan earthquake struck region. Journal of Earth Science23(1), 97-120.

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3):274–287

    Article  Google Scholar 

  • Yan Y, Cui Y, Tian X, Hu S, Guo J, Wang Z, Yin S, Liao L (2020) Seismic signal recognition and interpretation of the 2019 “7.23” Shuicheng landslide by seismogram stations. Landslides, 17(5), 1191-1206.

  • Yang Z, Qiao J, Uchimura T, Wang L, Lei X, Huang D (2017) Unsaturated hydro-mechanical behaviour of rainfall-induced mass remobilization in post-earthquake landslides. Eng Geol 222:102–110

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836

    Article  Google Scholar 

  • Zaagane M, Benhamou M, Frédéric D, Refas S, Hamimed A (2015) Morphometric analysis of landslides in the Ouarsenis area (west Algeria): implications for establishing a relationship between tectonic, geomorphologic, and hydraulic indexes. Arab J Geosci 8(9):6465–6482

    Article  Google Scholar 

  • Zaagane M, Refas S, Khaldi A, Frédéric D, Hamimed A, Aissa S, Moussa K, Sebbane A, Azzaz H, Mouassa S (2016) Relationship between geo-structural evolution and development of karstic systems in the culminating area of Ouarsenis (West Algeria). Arab J Geosci 9(14):638

    Article  Google Scholar 

  • Zêzere JL, de Brum FA, Rodrigues ML (1999) The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of Lisbon (Portugal). Geomorphology 30(1-2):133–146

    Article  Google Scholar 

  • Zygouri V, Koukouvelas IK (2019) Landslides and natural dams in the Krathis River, north Peloponnese, Greece. Bull Eng Geol Environ 78(1):207–222

    Article  Google Scholar 

Download references

Acknowledgements

This research was carried out in collaboration with the agents of the public services of the Mascara Department. We would like to thank them for providing us with the reports that served as an additional element to the inventory map. The authors are grateful to the support extended by the local government unit of the municipality of Ain Fares. The authors are thankful for the constructive comments of anonymous reviewers leading to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaagane Mansour.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, Z., Yanick, T., Aissa, S. et al. The susceptibility analysis of landslide using bivariate and multivariate modeling techniques in western Algeria: case of Fergoug watershed (Beni-Chougrane Mountains). Arab J Geosci 14, 1962 (2021). https://doi.org/10.1007/s12517-021-07919-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07919-1

Keywords

Navigation