Skip to main content
Log in

Seismic hazard assessment and rheological implications: a case study selected for cities of Saudi Arabia along the eastern coast of Red Sea

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

A probabilistic approach is used to evaluate the seismic hazard for 12 strategic cities in Saudi Arabia along the eastern coast of Red Sea. The focal depth variations controlled by rheological characteristics are taken into account for hazard calculations, and its creditability is tested through sensitivity analysis for hazard results. This study presents a neo-probabilistic seismic hazard assessment methodology in which the focal depth distribution of earthquakes within seismogenic layer is divided into three depth slices. These depth slices are based upon rheological characteristic of seismogenic layer. The hazard results are obtained using this depth-slice methodology and conventional approach in which uniform distribution of seismicity within seismogenic layer is assumed. The sensitivity analysis culminated in underestimation of hazard values in higher frequencies for uniform distribution of seismicity within seismogenic layer. Foregoing the observations recorded above, it can be concluded that the exploitation of depth-slices biased by the rheology to calculate hazard is relatively preferable in the situations demanding safety measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abrahamson N (2006) Seismic hazard assessment: problems with current practice and future developments. First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, pp 3–8

    Google Scholar 

  • Abrahamson NA, Bommer JJ (2005) Probability and uncertainty in seismic hazard analysis. Earthquake Spectra 21(2):603–607. https://doi.org/10.1193/1.1899158

    Article  Google Scholar 

  • Abrahamson N A, Silva W J (1997) Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismol Res Lett 68(1):94–127

  • Agar R (1987) The Najd fault system revisited; a two-way strike-slip orogen in the Saudi Arabian Shield. J Struct Geol 9(1):41–48. https://doi.org/10.1016/0191-8141(87)90042-3

    Article  Google Scholar 

  • Al Amri A, Abdelrahman K, Andreae MO, & Al-Dabbagh M (2017) Crustal and upper mantle structures beneath the Arabian Shield and Red Sea. In Lithosphere dynamics and sedimentary basins of the Arabian Plate and surrounding areas (pp. 3-29). Springer International Publishing

  • AlKathery AM (2010) Short-term and long-term seismic hazard assessment, NW Arabian Peninsula. MSc thesis, Geology Department, College of Science, King Saud University, p. 179

  • Al-Amri A M, Rodgers A J (2013) Improvement of seismicity parameters in the Arabian shield and platform using earthquake location and magnitude calibration. In: Lithosphere dynamics and sedimentary basins: The Arabian plate and analogues. Springer, Berlin, Heidelberg, pp. 281–293

  • Al-Amri A, Punsalan BT, Khalil A, Uy EA (2003) Seismic hazard assessment of western Saudi Arabia and the Red Sea region. IISEE, Japan, pp 95–112

    Google Scholar 

  • Al-Arifi NS, Fat-Helbary RE, Khalil AR, Lashin AA (2013) A new evaluation of seismic hazard for the northwestern part of Saudi Arabia. Nat Hazards 69(3):1435–1457

    Article  Google Scholar 

  • Albaric J, Déverchère J, Petit C, Perrot J, Le Gall B (2009) Crustal rheology and depth distribution of earthquakes: insights from the central and southern East African Rift System. Tectonophysics 468(1-4):28–41. https://doi.org/10.1016/j.tecto.2008.05.021

    Article  Google Scholar 

  • Almadani S, Al-Amri A, Fnais M, Abdelrahman K, Ibrahim E, Abdelmoneim E (2015) Seismic hazard assessment for Yanbu metropolitan area, western Saudi Arabia. Arab J Geosci 8(11):9945–9958

    Article  Google Scholar 

  • Al-Shanti A (2009) Geology of Arabian Shield of Saudi Arabia. King Abdulaziz Universiyt Press, Jeddah

    Google Scholar 

  • Anbazhagan P, Vinod JS, Sitharam TG (2009) Probabilistic seismic hazard analysis for Bangalore. Nat Hazards 48(2):145–166. https://doi.org/10.1007/s11069-008-9253-3

    Article  Google Scholar 

  • Atkinson GM (2004). An overview of developments in seismic hazard analysis. In 13th World Conference on Earthquake Engineering (pp. 1-6). Vancouver, B.C., Canada August 1-6, 2004

  • Atkinson GM, Boore DM (1995) Ground-motion relations for eastern North America. Bull Seismol Soc Am 85:17–30

    Google Scholar 

  • Barani S, Ferretti G, Massa M, Spallarossa D (2007) The waveform similarity approach to identify dependent events in instrumental seismic catalogues. Geophys J Int 168(1):100–108. https://doi.org/10.1111/j.1365-246X.2006.03207.x

    Article  Google Scholar 

  • Bazzurro P, Cornell CA (2004) Nonlinear soil-site effects in probabilistic seismic-hazard analysis. Bull Seismol Soc Am 94(6):2110–2123

    Article  Google Scholar 

  • Beauval C, Scotti O (2004) Quantifying sensitivities of PSHA for France to earthquake catalog uncertainties, truncation of ground-motion variability, and magnitude limits. Bull Seismol Soc Am 94(5):1579–1594. https://doi.org/10.1785/012003246

    Article  Google Scholar 

  • Bodri B (1996) Thermal state, rheology and seismicity in the Pannonian basin, Hungary. J Geodyn 21(4):309–328. https://doi.org/10.1016/0264-3707(96)00002-6

    Article  Google Scholar 

  • Bommer JJ (2002) Deterministic vs. probabilistic seismic hazard assessment: an exaggerated and obstructive dichotomy. J Earthq Eng 6(sup001):43–73. https://doi.org/10.1080/13632460209350432

    Article  Google Scholar 

  • Bommer JJ, Scherbaum F (2008) The use and misuse of logic trees in probabilistic seismic hazard analysis. Earthquake Spectra 24(4):997–1009. https://doi.org/10.1193/1.2977755

    Article  Google Scholar 

  • Boore DM (1983) Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull Seismol Soc Am 73:1865–1894

    Google Scholar 

  • Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160(3):635–676. https://doi.org/10.1007/PL00012553

    Article  Google Scholar 

  • Boore DM, Joyner WB, Fumal TE (1997) Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismol Res Lett 68(1):128–153. https://doi.org/10.1785/gssrl.68.1.128

    Article  Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afr Earth Sci 43(1-3):334–378. https://doi.org/10.1016/j.jafrearsci.2005.07.020

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2003) Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra. Bull Seismol Soc Am 93(1):314–331. https://doi.org/10.1785/0120020029

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra 24(1):139–171. https://doi.org/10.1193/1.2857546

    Article  Google Scholar 

  • Cochran JR (1981) The Gulf of Aden: structure and evolution of a young ocean basin and continental margin. J Geophys Res: Solid Earth (1978–2012) 86(B1):263–287. https://doi.org/10.1029/JB086iB01p00263

    Article  Google Scholar 

  • Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to central Europe and rock sites. J Seismol 10(2):137–156. https://doi.org/10.1007/s10950-005-9006-7

    Article  Google Scholar 

  • Cramer CH, Wheeler RL, Mueller CS (2002) Uncertainty analysis for seismic hazard in the southern Illinois basin. Seismol Res Lett 73(5):792–805. https://doi.org/10.1785/gssrl.73.5.792

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101(2):425–478. https://doi.org/10.1111/j.1365-246X.1990.tb06579.x

    Article  Google Scholar 

  • Déverchère J, Petit C, Gileva N, Radziminovitch N, Melnikova V, San'Kov V (2001) Depth distribution of earthquakes in the Baikal rift system and its implications for the rheology of the lithosphere. Geophys J Int 146(3):714–730. https://doi.org/10.1046/j.0956-540x.2001.1484.484.x

    Article  Google Scholar 

  • Douglas J (2007) On the regional dependence of earthquake response spectra. ISET J Earthq Technol 44:71–99

    Google Scholar 

  • Dowrick D J (2009) Earthquake resistant design and risk reduction. John Wiley & Sons, Hoboken

  • El-Hussain I, Deif A, Al-Jabri K, Toksoz N, El-Hady S, Al-Hashmi S, Al-Toubi K, Al-Shijbi Y, Al-Saifi M, Kuleli S (2012) Probabilistic seismic hazard maps for the sultanate of Oman. Nat Hazards 64(1):173–210. https://doi.org/10.1007/s11069-012-0232-3

    Article  Google Scholar 

  • Emmerson B, Jackson J, McKenzie D, Priestley K (2006) Seismicity, structure and rheology of the lithosphere in the Lake Baikal region. Geophys J Int 167(3):1233–1272. https://doi.org/10.1111/j.1365-246X.2006.03075.x

    Article  Google Scholar 

  • Fauzi A, Fauzi UJ (2013) Deaggregation of new national seismic hazard maps for Indonesia. In proceedings of 10 International Conference on Urban Earthquake Engineering, Tokyo, Japan

  • Gardner J, Knopoff L (1974) Is the sequence of earthquakes in southern California, with aftershocks removed. Poissonian Bull Seismol Soc Am 64:1363–1367

    Google Scholar 

  • Ghebreab W (1998) Tectonics of the Red Sea region reassessed. Earth Sci Rev 45(1-2):1–44. https://doi.org/10.1016/S0012-8252(98)00036-1

    Article  Google Scholar 

  • Giner J, Molina S, Jauregui P (2002) Advantages of using sensitivity analysis in seismic hazard assessment: a case study of sites in southern and eastern Spain. Bull Seismol Soc Am 92(2):543–554. https://doi.org/10.1785/0120000299

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Hainzl S, Kraft T, Wassermann J, Igel H, Schmedes E (2006) Evidence for rainfall-triggered earthquake activity. Geophys Res Lett 33(19). https://doi.org/10.1029/2006GL027642

  • Handy MR, Brun J-P (2004) Seismicity, structure and strength of the continental lithosphere. Earth Planet Sci Lett 223(3-4):427–441. https://doi.org/10.1016/j.epsl.2004.04.021

    Article  Google Scholar 

  • Hashemi M, Alesheikh AA, Zolfaghari MR (2013) A spatio-temporal model for probabilistic seismic hazard zonation of Tehran. Comput Geosci 58:8–18. https://doi.org/10.1016/j.cageo.2013.04.005

    Article  Google Scholar 

  • Hassaballa A, Mohamed ARE, Sobaih M (2011) Sensitivity analysis of parameters for probabilistic seismic hazard for Sudan. J Sci Technol 12:02

    Google Scholar 

  • Ito K (1999) Seismogenic layer, reflective lower crust, surface heat flow and large inland earthquakes. Tectonophysics 306(3-4):423–433

    Article  Google Scholar 

  • Ito K, Nakamura S (1998) Variation in thickness of the Seismogenic layer in southwestern Japan and their relation to large inland earthquake. Annuals Disas Prev Res Inst 41(B-1):27–35

    Google Scholar 

  • Kagan Y (1990) Random stress and earthquake statistics: spatial dependence. Geophys J Int 102(3):573–583. https://doi.org/10.1111/j.1365-246X.1990.tb04584.x

    Article  Google Scholar 

  • Kijko A (2004) Estimation of the maximum earthquake magnitude, M max. Pure Appl Geophys 161(8):1655–1681. https://doi.org/10.1007/s00024-004-2531-4

    Article  Google Scholar 

  • Kijko A, Graham G (1998) Parametric-historic procedure for probabilistic seismic hazard analysis part I: estimation of maximum regional magnitude mmax. Pure Appl Geophys 152(3):413–442. https://doi.org/10.1007/s000240050161

    Article  Google Scholar 

  • Kijko A, Sellevoll M (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79:645–654

    Google Scholar 

  • Kijko A, Sellevoll MA (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol Soc Am 82:120–134

    Google Scholar 

  • Kijko A, Lasocki S, Graham G (2001) Non-parametric seismic hazard in mines. Pure Appl Geophys 158(9):1655–1675. https://doi.org/10.1007/PL00001238

    Article  Google Scholar 

  • Knopoff L (1964) The statistics of earthquakes in Southern California. Bull Seismol Soc Am 54:1871–1873

    Google Scholar 

  • Konstantinou K (2010) Crustal rheology of the Santorini–Amorgos zone: implications for the nucleation depth and rupture extent of the 9 July 1956 Amorgos earthquake, southern Aegean. J Geodyn 50(5):400–409. https://doi.org/10.1016/j.jog.2010.05.002

    Article  Google Scholar 

  • Kulkarni R B, Youngs R R, Coppersmith K J (1984) Assessment of confidence intervals for results of seismic hazard analysis. In: Proceedings of the eighth world conference on earthquake engineering, vol 1. pp. 263-270

  • Lin T, Baker J (2011) Probabilistic seismic hazard deaggregation of ground motion prediction models. In: 5th international conference on earthquake geotechnical engineering, Santiago, Chile. pp. 10-13

  • Lombardi AM, Akinci A, Malagnini L, Mueller CS (2005) Uncertainty analysis for seismic hazard in Northern and Central Italy. Ann Geophys

  • Maggi A, Jackson J, Mckenzie D, Priestley K (2000) Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology 28(6):495–498. https://doi.org/10.1130/0091-7613(2000)28<495:EFDEET>2.0.CO;2

    Article  Google Scholar 

  • Marin S, Avouac J-P, Nicolas M, Schlupp A (2004) A probabilistic approach to seismic hazard in metropolitan France. Bull Seismol Soc Am 94(6):2137–2163. https://doi.org/10.1785/0120030232

    Article  Google Scholar 

  • McGuire RK, Shedlock KM (1981) Statistical uncertainties in seismic hazard evaluations in the United States. Bull Seismol Soc Am 71(4):1287–1308

    Google Scholar 

  • McGuire RK, Toro G (1986) Methods of earthquake ground motion estimation for the eastern United States. Electric Power Research Institute Research Project No. RP2556-16, prepared by Risk Engineering, Inc., Acton

  • Meletti C, Galadini F, Valensise G, Stucchi M, Basili R, Barba S, Vannucci G, Boschi E (2008) A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics 450(1-4):85–108. https://doi.org/10.1016/j.tecto.2008.01.003

    Article  Google Scholar 

  • Mihali S, Maja O, Krka M (2011) Seismic microzonation: A review of principles and practice. Geofizika 28(1):5-20

  • Motohashi S, Ebisawa K, Sakagami M (2004). Evaluation of the Seismogenic Layer Depth in Japan Using the JMA Catalogue. In proceedings of OECD/NEA CSNI Workshop, Tokyo, Japan

  • Muço B, Alexiev G, Aliaj S, Elezi Z, Grecu B, Mandrescu N, Milutinovic Z, Radulian M, Ranguelov B, Shkupi D (2012) Geohazards assessment and mapping of some Balkan countries. Nat Hazards 64(2):943–981. https://doi.org/10.1007/s11069-012-0185-6

    Article  Google Scholar 

  • Öncel A, Alptekin Ö (1999) Effect of aftershocks on earthquake hazard estimation: an example from the North Anatolian fault zone. Nat Hazards 19(1):1–11. https://doi.org/10.1023/A:1008139802609

    Article  Google Scholar 

  • Peruš I, Fajfar P (2009) How reliable are the ground motion prediction equations. In: Proceedings of the 20th international conference on structural mechanics in reactor technology (SMiRT 20), Espoo, Paper, vol. 9

  • Raoof M, Herrmann R, Malagnini L (1999) Attenuation and excitation of three-component ground motion in southern California. Bull Seismol Soc Am 89:888–902

    Google Scholar 

  • Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res: Solid Earth (1978–2012) 90(B7):5479–5495. https://doi.org/10.1029/JB090iB07p05479

    Article  Google Scholar 

  • Reasenberg PA, Jones LM (1989) Earthquake hazard after a mainshock in California. Science 243(4895):1173–1176. https://doi.org/10.1126/science.243.4895.1173

    Article  Google Scholar 

  • Rehman F, El-Hady SM, Atef AH, Harbi HM (2016) Seismic hazard assessment of western Coastal Province of Saudi Arabia: deterministic approach. Earthq Sci 29(5):299–309

    Article  Google Scholar 

  • Sabetta F, Lucantoni A, Bungum H, Bommer JJ (2005) Sensitivity of PSHA results to ground motion prediction relations and logic-tree weights. Soil Dyn Earthq Eng 25(4):317–329. https://doi.org/10.1016/j.soildyn.2005.02.002

    Article  Google Scholar 

  • Sadek A (2004) Seismic map for the state of Kuwait. Emirates J Eng Res 9:53–58

    Google Scholar 

  • Sadigh K, Chang C-Y, Egan J, Makdisi F, Youngs R (1997) Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismol Res Lett 68(1):180–189. https://doi.org/10.1785/gssrl.68.1.180

    Article  Google Scholar 

  • Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, UK, p 496. https://doi.org/10.1017/CBO9780511818516

    Book  Google Scholar 

  • Scordilis E (2006) Empirical global relations converting M S and m b to moment magnitude. J Seismol 10(2):225–236. https://doi.org/10.1007/s10950-006-9012-4

    Article  Google Scholar 

  • Searle R, Escartin J (2004) The rheology and morphology of oceanic lithosphere and mid-ocean ridges. Geophys Monogr Ser 148:63–93

    Google Scholar 

  • Sokolov VY, Wenzel F, Mohindra R (2009) Probabilistic seismic hazard assessment for Romania and sensitivity analysis: a case of joint consideration of intermediate-depth (Vrancea) and shallow (crustal) seismicity. Soil Dyn Earthq Eng 29(2):364–381. https://doi.org/10.1016/j.soildyn.2008.04.004

    Article  Google Scholar 

  • Stepp JC, Silva WJ, McGuire RK, Sewell RW (1993) Determination of earthquake design loads for a high level nuclear waste repository facility (No. CONF-9310102--VOL. 2). In: Proceedings of the Natural Phenomena hazards Mitigation Conference, Vol 2. pp 651-657, Oct. 19-22, Atlanta GA

  • Stern RJ (1985) The Najd Fault System, Saudi Arabia and Egypt: a Late Precambrian rift-related transform system? Tectonics 4(5):497–511. https://doi.org/10.1029/TC004i005p00497

    Article  Google Scholar 

  • Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101(1-2):29–67. https://doi.org/10.1016/j.earscirev.2010.01.002

    Article  Google Scholar 

  • Toro GR, Abrahamson NA, Schneider JF (1997) Model of strong ground motions from earthquakes in central and eastern North America: best estimates and uncertainties. Seismol Res Lett 68(1):41–57. https://doi.org/10.1785/gssrl.68.1.41

    Article  Google Scholar 

  • Van Stiphout T, Zhuang J, Marsan D (2012) Seismicity declustering, community online resource for statistical seismicity analysis. https://doi.org/10.5078/corssa-52382934

  • Vipin K, Sitharam T (2013) Delineation of seismic source zones based on seismicity parameters and probabilistic evaluation of seismic hazard using logic tree approach. J Earth Syst Sci 122(3):661–676. https://doi.org/10.1007/s12040-013-0300-4

    Article  Google Scholar 

  • Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95(2):684–698. https://doi.org/10.1785/0120040007

    Article  Google Scholar 

  • Wong IG, District, U.S.A.C.o.E.J, Corporation, U (2004) Deterministic and probabilistic seismic hazard analyses: Portuguese dam. URS Corporation, Puerto Rico

    Google Scholar 

  • Yazdani A, Kowsari M (2013) Earthquake ground-motion prediction equations for northern Iran. Nat Hazards 69(3):1877–1894. https://doi.org/10.1007/s11069-013-0778-8

    Article  Google Scholar 

  • Youssef SEH (2015) Seismicity and seismotectonic setting of the Red Sea and adjacent areas. In: The Red Sea. Springer, Berlin Heidelberg, pp 151–159

    Google Scholar 

  • Zahran HM, Sokolov V, Youssef SEH, Alraddadi WW (2015) Preliminary probabilistic seismic hazard assessment for the Kingdom of Saudi Arabia based on combined areal source model: Monte Carlo approach and sensitivity analyses. Soil Dyn Earthq Eng 77:453–468. https://doi.org/10.1016/j.soildyn.2015.06.011

    Article  Google Scholar 

  • Zahran HM, Sokolov V, Roobol MJ, Stewart, IC, Youssef SEH, El-Hadidy M (2016) On the development of a seismic source zonation model for seismic hazard assessment in western Saudi Arabia. J Seismol 20(3):747–769

  • Zhang Z, Deng Y, Chen L, Wu J, Teng J, Panza G (2013) Seismic structure and rheology of the crust under mainland China. Gondwana Res 23(4):1455–1483. https://doi.org/10.1016/j.gr.2012.07.010

    Article  Google Scholar 

  • Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-time earthquake occurrences. J Am Stat Assoc 97(458):369–380. https://doi.org/10.1198/016214502760046925

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the support by Deanship of Graduate Studies and Department of Geophysics, Faculty of Earth Sciences, King Abdulaziz University. The authors would like to thank Earthquake Monitoring Center, Sultan Qaboos University, Oman who give us the permission to run EZ-FRISK software for academic purposes and scientific cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Rehman.

Electronic supplementary material

ESM 1

(DOCX 1.57 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, F., Alamri, A.M., El-Hady, S.M. et al. Seismic hazard assessment and rheological implications: a case study selected for cities of Saudi Arabia along the eastern coast of Red Sea. Arab J Geosci 10, 540 (2017). https://doi.org/10.1007/s12517-017-3325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3325-1

Keywords

Navigation