Skip to main content
Log in

Geology, geochemistry, and some genetic discussion of the Chador-Malu iron oxide-apatite deposit, Bafq District, Central Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Chador-Malu iron oxide-apatite system (Bafq District, Central Iran) contains the largest known iron ore deposit in Iran (pre-mining reserve of 400 Mt @ 55 % Fe), and comprises the pipe-like northern (this study) and the sill-like southern orebodies of predominantly massive ore, and a sodic-calcic alteration envelope. The geology and geochemistry of the Chador-Malu deposit demonstrates its similar characteristics to the Kiruna-type deposits. There is circumstantial evidence for rare earth elements (REE) mobilization during apatite leaching by high-temperature fluids and associated monazite nucleation. Pervasive actinolitization of the rhyolitic country rocks led to the formation of actinolite-rich metasomatic host rocks, which represent another evidence for high-temperature fluids at Chador-Malu. Hydrothermal mineralization is suggested by small iron ore veins (2–3 cm thick) and breccias cemented by iron oxides, as well as a Fe-metasomatism which overprints all types of host rock alteration. Based on REE geochemistry and spatial relationships, it is proposed that a potential source for metals and P could be late-stage Fe-P melt differentiates of the Cambrian magmatism, which is consistent with the late Fe-metasomatism of the host rocks. The proposed Fe-P melts and the mineralization would be linked by hydrothermal media through the zones of ring fracture at Chador-Malu and similar parts of the Bafq district.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aftabi A, Mohseni S, Babeki A, Azaraien H (2009) Fluid inclusion and stable isotope study of the Esfordi apatite–magnetite deposit, central Iran—a discussion. Econ Geol 104:137–139

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Barton MD, Johnson DA (1996) Evaporitic source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 24:259–262

    Article  Google Scholar 

  • Barton MD, Johnson DA (2000) Alternative brine source for Fe-oxide(-Cu-Au) systems: implications for hydrothermal alteration and metals. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 1. PGC Publishing, Adelaide, pp 43–60

    Google Scholar 

  • Barton MD, Johnson DA (2004) Footprints of Fe-oxide (-Cu-Au) systems. In: Groves DI (ed) SEG 2004: Predictive mineral discovery under cover. Centre for Global Metallogeny, Spec. Pub. 33, The University of Western Australia, pp 112–116

  • Beaudoin G, Dupuis C, Gosselin P, Jebrak M (2007) Mineral chemistry of iron oxides: application to mineral exploration. In Andrew CJ et al. (eds) Digging Deeper. Proceedings of the 9th Biennial SGA Meeting, Dublin, pp 497-500

  • Beaudoin G, Dupuis C (2010) Iron-oxide trace element fingerprinting of mineral deposit types. In: Corriveau L, Mumin H (eds) Exploring for Iron Oxide Copper–gold deposits: Canada and global analogues. Geol. Assoc. Canada, pp 111–126

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Explor 76:45–69

    Article  Google Scholar 

  • Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. In Gupta HK, Delany FM (eds) Zagros-Hindu Kush-Himalaya geodynamic evolution, volume 3. American Geophysical Union Geodynamic Series, pp 5-32

  • Bonyadi Z, Davidson GJ, Mehrabi B, Meffre S, Ghazban F (2011) Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry. Chem Geol 281:253–269

    Article  Google Scholar 

  • Broman C, Nyström JO, Henriquez F, Elfman M (1999) Fluid inclusions in magnetite-apatite ore from a cooling magmatic system at El Laco, Chile. GFF 121:253–267

    Article  Google Scholar 

  • Clark AH, Kontak DJ (2004) Fe-Ti-P oxide melts generated through magma mixing in the Antauta subvolcanic center, Peru: implications for the origin of nelsonite and iron oxide-dominated hydrothermal deposits. Econ Geol 99:377–395

    Article  Google Scholar 

  • Daliran F (1990) The magnetite-apatite deposit of Mishdovan, East Central Iran. PhD thesis, Ruprecht-Karls-Universität, Germany

  • Daliran F (1999) REE geochemistry of Bafg apatites, Iran: implication for the genesis of Kiruna-type iron ores. In: Stanley CJ, Rankin AH, Bondar RJ (eds) Mineral deposits: processes to processing, volume 1. Balkema, Rotterdam, pp 631–634

    Google Scholar 

  • Daliran F (2002) Kiruna-type iron oxide-apatite ores and apatitites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 2. PGC Publishing, Adelaide, pp 303–320

    Google Scholar 

  • Daliran F, Stosch HG, Williams P (2007) Multistage metasomatism and mineralization at hydrothermal Fe oxide-REE-apatite deposits and “apatitites” of the Bafq District, Central-East Iran. In Andrew C.J. et al. (eds) Digging Deeper. Proceedings of the 9th Biennial SGA Meeting, Dublin, pp 1501-1504

  • Daliran F, Stosch HG, Williams P, Jamali H, Dorri MB (2010) Early Cambrian iron oxide-apatite-REE (U) deposits of the Bafq district, East-Central Iran. In: Corriveau L, Mumin H (eds) Exploring for Iron Oxide Copper–gold deposits: Canada and global analogues. Geol. Assoc. Canada, pp 147-160

  • Darvishzadeh A (1983) Esfordi phosphate deposit. Tehran Univ J Sci 13:2–24 (in Farsi)

    Google Scholar 

  • Darvishzadeh A, Aletaha-Kohbanani B (1996) Late Precambrian magmatism and tectonomagmatism in Central Iran. Tehran Univ J Sci 22:57–78 (in Farsi with English abstract)

    Google Scholar 

  • Duncan RJ, Hitzman MW, Nelson EP, Togtokhbayar O (2014) Structural and lithological controls on iron oxide copper-gold deposits of the Southern Selwyn-Mount Dore Corridor, Eastern Fold Belt, Queensland, Australia. Econ Geol 109:419–456

    Article  Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos 46:319–335

    Article  Google Scholar 

  • Foose MP, McLelland JM (1995) Proterozoic low-Ti iron-oxide deposits in New York and New Jersey: relation to Fe-oxide, Cu-U-Au-rare earth element, deposits and tectonic implications. Geology 23:665–668

    Article  Google Scholar 

  • Förster HJ, Borumandi H (1971) Jungpräkambrische magnetit-lava und magnetit-tuffe aus dem Zentraliran (Neoprecambrian magnetite lava and magnetite tuffs from the Central Iran). Naturwiss 58:524 (in German)

    Article  Google Scholar 

  • Förster HJ, Jafarzadeh A (1984) The Chador-Malu iron ore deposit, Bafq district, Central Iran, Magnetite filled pipes. N Jb Geol Paläont (Abh) 168:524–534

    Google Scholar 

  • Förster H, Jafarzadeh A (1994) The Bafq mining district in Central Iran- a highly mineralized Infracambrian volcanic field. Econ Geol 89:1697–1721

    Article  Google Scholar 

  • Frietsch R (1978) The magmatic origin of the iron ores of the Kiruna-type. Econ Geol 73:478–485

    Article  Google Scholar 

  • Frietsch R (1984) On the magmatic origin of iron ores of the Kiruna-type: a reply. Econ Geol 79:1949–1951

    Article  Google Scholar 

  • Frietsch R, Perdahl JA (1995) Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol Rev 9:489–510

    Article  Google Scholar 

  • Ghorbani M (2013) A summary of geology of Iran. In: Ghorbani M (ed) The economic geology of Iran: mineral deposits and natural resources. Springer Science + Business Media, Dordrecht, pp 45–64

    Chapter  Google Scholar 

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through Earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654

    Article  Google Scholar 

  • Haghipour A (1974) Étude géologique de la region de Biabanak-Bafg (Iran Central): Pétrographie et tectonique du scole Précambrien et de sa couverture: Unpublished PhD Thesis, Université de Grenoble, France

  • Harlov DE, Förster HJ (2003) Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. Am Min 88:1209–1229

    Google Scholar 

  • Harlov DE, Wirth R, Förster HJ (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Miner Pet 150:268–286

    Article  Google Scholar 

  • Harlov DE, Andersson UB, Förster HJ, Nyström JO, Dulski P, Broman C (2002) Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chem Geol 191:47–72

    Article  Google Scholar 

  • Henderson P (1996) The rare earth elements: introduction and review. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Chapman & Hall, London, pp 1–19

    Google Scholar 

  • Henriquez F, Nyström JO (1998) Magnetite bombs at El Laco volcano, Chile. GFF 120:269–271

    Article  Google Scholar 

  • Hildebrand RS (1986) Kiruna-type deposits: their origin and relationship to intermediate subvolcanic plutons in the Great Bear Magmatic Zone, northwest Canada. Econ Geol 81:640–659

    Article  Google Scholar 

  • Hitzman MW (2000) Iron oxide-Cu-Au deposits: what, where, when and why. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 1. PGC Publishing, Adelaide, pp 9–25

    Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Res 58:241–287

    Article  Google Scholar 

  • Humphris SE (1989) The mobility of the rare earh elements in the crust. In: Henderson P (ed) Rare earth element geochemistry. Elsevier Science Publishers B.V., Amsterdam, pp 317–342

    Google Scholar 

  • Hurai V, Simon K, Wiechert U, Hoefs J, Konecny P, Huraiova M, Pironon J, Lipka J (1998) Immiscible separation of metalliferous Fe/ Ti-oxide melts from fractionating alkali basalt: P-T-fO2 conditions and two-liquid elemental partitioning. Contrib Mineral Petrol 133:12–29

    Article  Google Scholar 

  • Jafarzadeh A (1981) Die magnetiterzlagerstätte Chadormalu in zentral Iran und ihre exploration (The Chadormalu magnetite ore deposit in central Iran and its exploration). PhD thesis, Aachen University, Germany, (in German)

  • Jami M (2005) Geology, geochemistry and evolution of the Esfordi phosphate-iron deposit, Bafq area, Central Iran. Unpublished PhD Thesis, The University of New South Wales, Australia

  • Jami M, Dunlop AC, Cohen DR (2007) Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran. Econ Geol 102:1111–1128

    Article  Google Scholar 

  • Jonsson E, Troll VR, Hӧgdahl K, Harris Ch, Weis F, Nilsson KP, Skelton A (2013) Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden. Sci Rep 3:Article No. 1644, DOI:10.1038/srep01644

  • Loberg BEH, Horndahl AK (1983) Ferride geochemistry of Swedish Precambrian iron ores. Miner Depos 18:487–504

    Article  Google Scholar 

  • Moghtaderi A, Moore F, Mohammadzadeh A (2007) The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran. J Asian Earth Sci 30:238–252

    Article  Google Scholar 

  • Mohseni S, Aftabi A (2012) Comment on “Significance of apatite REE depletion and monazite inclusions in the brecciated Sehchahun iron oxide-apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry” by Bonyadi Z, DavidsonGJ, Mehrabi B, MeffreS, Ghazban F [Chem. Geol. 281, 253–269]. Chem Geol 334:378–381

    Article  Google Scholar 

  • Mokhtari MAA, Zadeh GH, Emami MH (2013) Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry. J Earth Syst Sci 122:795–807

    Article  Google Scholar 

  • Nabatian G, Ghaderi M, Daliran F, Rashidnejad-Omran N (2012) Sorkhe-Dizaj iron oxide–apatite ore deposit in the Cenozoic Alborz-Azarbaijan Magmatic Belt, NW Iran. Resour Geol 63:42–56

    Article  Google Scholar 

  • Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2012) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Article  Google Scholar 

  • Naslund HR (1983) The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts. Am J Sci 283:1034–1059

    Article  Google Scholar 

  • Naslund HR, Aguirre R, Dobbs FM, Henriquez FJ, Nystrom JO (2000) The origin, emplacement, and eruption of ore magmas. IX Congreso Geologico Chileno Actas, Chile, 2:135-139

  • Naslund HR, Henriquez F, Nystroem JO, Vivallo W, Dobbs FM (2002) Magmatic iron ores and associated mineralisation: examples from the Chilean High Andes and Coastal Cordillera. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 2. PGC Publishing, Adelaide, pp 207–226

    Google Scholar 

  • NISCO (1980) Result of search and valuation works at magnetic anomalies of the Bafq iron ore region during 1976-1979. Unpublished Report, National Iranian Steel Corporation, 260 p

  • Nyström JO, Henriquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry. Econ Geol 89:820–839

    Article  Google Scholar 

  • Parak T (1975) Kiruna iron ores are not ‘intrusive-magmatic ores of the Kiruna type. Econ Geol 70:1242–1258

    Article  Google Scholar 

  • Philpotts AR (1967) Origin of certain iron-titanium oxide and apatite rocks. Econ Geol 62:303–315

    Article  Google Scholar 

  • Philpotts AR (1982) Composition of immiscible liquids in volcanic rocks. Contrib Mineral Petrol 80:201–218

    Article  Google Scholar 

  • Ramezani J, Tucker RD (2003) The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am J Sci 303:622–665

    Article  Google Scholar 

  • Rhodes AL, Oreskes N (1999) Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile. Soc Econ Geol Spec Publ 7:299–332

    Google Scholar 

  • Rollinson HR (1993) Using trace element data. In: Rollinson HR (ed) Using geochemical data. Pearson Education Asia (Pte) Ltd, Singapore (COS), pp 102–170

    Google Scholar 

  • Sabet-Mobarhan-Talab A (2014) Economic geology and REE geochemistry of the Chador-Malu iron ore deposit. MSc thesis, Amirkabir University of Technology (Tehran Polytechnic), Iran, (in Farsi with English abstract)

  • Sabet-Mobarhan-Talab A, Alinia F (2014) Mineralogy of the Chador-Malu iron ore deposit: tracking the effects of hydrothermal overprinting. The Conference on Mining Science. Islamic Azad University-Sari Branch, Sari (in Farsi with English abstract)

    Google Scholar 

  • Samani BA (1988) Metallogeny of the Precambrian in Iran. Precambrian Res 39:85–106

    Article  Google Scholar 

  • Samani BA (1998) Precambrian metallogenic deposits in central Iran. AEOI Sci Bull 17:1–16 (in Farsi with English abstract)

    Google Scholar 

  • Shamsi-Pour R, Khakzad A, Rasa I, Vosoughi-Abedini M (2008) Mineralogy and fluid inclusion studies of Chador-Malu iron ore deposit, Bafq, Central Iran. Res J Univ Isfahan 29:129–144 (in Farsi)

    Google Scholar 

  • Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97:1101–1109

    Google Scholar 

  • Smith MP, Gleeson SA, Yardley BWD (2013) Hydrothermal fluid evolution and metal transport in the Kiruna District, Sweden: contrasting metal behavior in aqueous and aqueous-carbonic brines. Geochim Cosmochim Acta 102:89–112

    Article  Google Scholar 

  • Stosch HG, Romer RL, Daliran F, Rhede D (2011) Uranium-lead ages apatite from iron oxide ores of the Bafq District, east-Central Iran. Miner Deposita 46:9–21

    Article  Google Scholar 

  • Torab F (2008) Geochemistry and metallogeny of magnetite-apatite deposits of the Bafq Mining District, Central Iran. Unpublished PhD Thesis, Clausthal University of Technology, Germany

  • Torab FM, Lehmann B (2007) Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Min Mag 71:347–363

    Article  Google Scholar 

  • Williams PJ, Barton MD, Fontboté L, de Haller A, Johnson DA, Mark G, Marschik R, Oliver NHS (2005) Iron-oxide-copper-gold deposits: Geology, space-time distribution, and possible modes of origin. Econ Geol 100th Anniversary Volume: 371–406

  • Williams GJ, Houshmand-Zadeh A (1996) A petrological and genetic study of the Choghart iron ore body and the surrounding rocks. Geol Surv Iran, Tehran, Report, 18 p

Download references

Acknowledgments

The present study is based on the first author’s MSc thesis at Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. The authors express their gratitude to the managers of the Chador-Malu Mining and Industrial Co. for access to the deposit, supporting us during field work and sampling, and funding this research. Some costs were also covered by the Amirkabir University of Technology (Tehran Polytechnic) Grant for Graduate Research. This revised version has greatly benefited from the insightful, constructive comments Professor Robert Duncan and other anonymous reviewers kindly provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Sabet-Mobarhan-Talab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabet-Mobarhan-Talab, A., Alinia, F., Ghannadpour, SS. et al. Geology, geochemistry, and some genetic discussion of the Chador-Malu iron oxide-apatite deposit, Bafq District, Central Iran. Arab J Geosci 8, 8399–8418 (2015). https://doi.org/10.1007/s12517-015-1813-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1813-8

Keywords

Navigation