Skip to main content
Log in

Genome-wide Characterization of Brassica rapa Genes Encoding Serine/arginine-rich Proteins: Expression and Alternative Splicing Events by Abiotic Stresses

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Serine/arginine-rich (SR) gene family members can diversify the transcriptome and proteome of eukaryotes by facilitating the alternative splicing (AS) of precursor messenger RNAs. Herein, we investigated the evolutionary dynamics, AS patterns, and expression levels of the Brassica rapa SR (BrSR) gene family in young seedlings treated with abiotic stresses. A comparative genomic analysis identified 25 BrSR genes at 18 Arabidopsis loci and three BrSR-like genes at two Arabidopsis loci. Thirteen of these loci were singletons, while seven loci carried paralogs. All the duplicated pairs were determined to be under purifying selection pressure. The expansion of the BrSR gene family was found to be the result of segmental duplications only. Additionally, the expression levels of 78.6% (22 of 28) and the AS patterns of 60.7% (17 of 28) of the BrSR genes were altered in response to abiotic stresses. Among the analyzed abiotic stresses, oxidative, cold, and heat treatments induced the largest expression changes, while cold and heat stresses caused most AS events. Our findings provide insights into the evolutionary dynamics of BrSR genes following polyploidization events, and provide an important resource for future studies aimed at characterizing the specific function(s) of BrSR genes in plant growth, development, and defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker MS, Baute GJ, Liu SL (2012) Duplications and turnover in plant genomes. In Wandel F, Greilhuber J, Dolezel J, Leitch IJ, eds, Plant genome diversity, Ed 1, Springer, Vienna, pp. 155–69

    Chapter  Google Scholar 

  • Barta A, Kalyna M, Reddy AS (2010) Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants. Plant Cell 22:2926–2929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng F, Wu J, Fang L, Wang X (2012a) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X (2012b) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLOS ONE 7:e36442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:14024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darracq A, Adams KL (2013) Features of evolutionarily conserved alternative splicing events between Brassica and Arabidopsis. New Phytol 199:252–263

    Article  PubMed  CAS  Google Scholar 

  • Ding F, Cui P, Wang Z, Zhang S, Ali S, Xiong L (2014) Genomewide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genomics 15:431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drechsel G, Kahles A, Kesarwani AK, Stauffer E, Behr J, Drewe P, Rätsch G, Wachter A (2013) Nonsense-mediated decay of alternative precursor mRNA splicing variants is a major determinant of the Arabidopsis steady state transcriptome. Plant Cell 25:3726–3742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duque P (2011) A role for SR proteins in plant stress responses. Plant Signal Behav 6:49–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein Identification and Analysis Tools on the ExPASy Server. In Walker JM, eds, The Proteomics Protocols Handbook. Humana Press, Totowa, pp. 571–607

    Chapter  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  PubMed  CAS  Google Scholar 

  • Graveley BR, Hertel KJ, Maniatis T (1999) SR proteins are “locators” of the RNA splicing machinery. Curr Biol 9:R6–R7

    Article  PubMed  CAS  Google Scholar 

  • Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6: 1197–1211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iida K, Go M (2006) Survey of conserved alternative splicing events of mRNAs encoding SR proteins in land plants. Mol Biol Evol 23:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Isshiki M, Tsumoto A, Shimamoto K (2006) The serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA. Plant Cell 18:146–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalyna M, Barta A (2004) A plethora of plant serine/arginine-rich proteins: redundancy or evolution of novel gene functions? Biochem Soc Trans 32:561–564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    Article  PubMed  CAS  Google Scholar 

  • Lareau LF, Brooks AN, Soergel DA, Meng Q, Brenner SE (2007) The coupling of alternative splicing and nonsense-mediated mRNA decay. Adv Exp Med Biol 623:190–211

    Article  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in. Nucleic Acids Res 43:D257–D260

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Long JC, Caceres JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417:15–27

    Article  PubMed  CAS  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  PubMed  CAS  Google Scholar 

  • Meyer K, Koester T, Staiger D (2015) Pre-mRNA splicing in plants: in vivo functions of RNA binding proteins implicated in the splicing process. Biomolecules 5:1717–1740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore MJ, Query CC, Sharp PA (1993) Splicing of precursors to mRNAs by the spliceosomes. In Gesteland RF, Cech RT, Atkins C, eds Raymond FG, Thomas RC, John FA, eds, The RNA world. Ed 2, Cold Spring Harbor Laboratory Press, NY, pp. 303–57

    Google Scholar 

  • Mueller WF, Hertel KJ (2012) The role of SR and SR-related proteins in pre-mRNA splicing. In Lorkovic ZJ, eds, RNA binding proteins, Landes Bioscience, Austin, pp. 27–46

    Google Scholar 

  • Palusa SG, Ali GS, Reddy AS (2007) Alternative splicing of premRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. The Plant J 49:1091–1107

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS (2004) Plant serine/arginine-rich proteins and their role in pre-mRNA splicing. Trends Plant Sci 9:541–547

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    Article  PubMed  CAS  Google Scholar 

  • Richardson DN, Rogers MF, Labadorf A, Ben-Hur A, Guo H, Paterson AH, Reddy AS (2011) Comparative analysis of serine/argininerich proteins across 27 eukaryotes: insights into sub-family classification and extent of alternative splicing. PLOS ONE 6:e24542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Semon M, Wolfe KH (2007) Consequences of genome duplication. Curr Opin Genet Dev 17:505–512

    Article  PubMed  CAS  Google Scholar 

  • Shepard PJ, Hertel KJ (2009) The SR protein family. Genome Biol 10:242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simpson CG, Manthri S, Raczynska KD, Kalyna M, Lewandowska D, Kusenda B, Maronova M, Szweykowska-Kulinska Z, Jarmolowski A, Barta A, Brown JW (2010) Regulation of plant gene expression by alternative splicing. Biochem Soc Trans 38:667–671

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, DePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, et al. (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse MR, Cheng F, Pires JC, Lisch D, Freeling M, Wang X (2014) Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proc Natl Acad Sci USA 111:5283–5288

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Yang H, Yang H (2016) Evolutionary character of alternative splicing in plants. Bioinform Biol Insights 9:47–52

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo In Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, E.K., Krishnamurthy, P., Kim, J.A. et al. Genome-wide Characterization of Brassica rapa Genes Encoding Serine/arginine-rich Proteins: Expression and Alternative Splicing Events by Abiotic Stresses. J. Plant Biol. 61, 198–209 (2018). https://doi.org/10.1007/s12374-017-0391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-017-0391-6

Keywords

Navigation