Skip to main content

The Coupling of Alternative Splicing and Nonsense-Mediated mRNA Decay

  • Chapter
Alternative Splicing in the Postgenomic Era

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 623))

Abstract

Most human genes exhibit alternative splicing, but not all alternatively spliced transcripts produce functional proteins. Computational and experimental results indicate that a substantial fraction of alternative splicing events in humans result in mRNA isoforms that harbor a premature termination codon (PTC). These transcripts are predicted to be degraded by the nonsense-mediated mRNA decay (NMD) pathway. One explanation for the abundance of PTC-containing isoforms is that they represent splicing errors that are identified and degraded by the NMD pathway. Another potential explanation for this startling observation is that cells may link alternative splicing and NMD to regulate the abundance of mRNA transcripts. This mechanism, which we call “Regulated Unproductive Splicing and Translation” (RUST), has been experimentally shown to regulate expression of a wide variety of genes in many organisms from yeast to human. It is frequently employed for autoregulation of proteins that affect the splicing process itself. Thus, alternative splicing and NMD act together to play an important role in regulating gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boue S, Letunic I, Bork P. Alternative splicing and evolution. Bioessays 2003; 25:1031–1034.

    Article  CAS  PubMed  Google Scholar 

  2. Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet 2002; 30:13–19.

    Article  CAS  PubMed  Google Scholar 

  3. Maniatis T, Task B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 2002; 418:236–243.

    Article  CAS  PubMed  Google Scholar 

  4. Garda J, Gerber SH, Sugita S et al. A conformational switch in the piccolo C2A domain regulated by alternative splicing. Nat Struct Mol Biol 2004; 11:45–53.

    Article  CAS  Google Scholar 

  5. Resch A, Xing Y, Modrek B et al. Assessing the impact of alternative splicing on domain interactions in the human proteome. J Proteome Res 2004; 3:76–83.

    Article  CAS  PubMed  Google Scholar 

  6. Xing Y, Xu Q, Lee C. Widespread production of novel soluble protein isoforms by alternative splicing removal of transmembrane anchoring domains. FEBS Lett 2003; 555:572–578.

    Article  CAS  PubMed  Google Scholar 

  7. Maquat LE. NMD in mammalian cells: A history. In: Maquat LE, ed. Nonsense-Mediated mRNA Decay. Georgetown: Landes Bioscience, 2006;45–58.

    Google Scholar 

  8. Nagy E, Maquat LE. A rule for termination-codon position within intron-containing genes: When nonsense affects RNA abundance. Trends Biochem Sci 1998; 23:198–199.

    Article  CAS  PubMed  Google Scholar 

  9. Lejeune F, Maquat LE. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 2005; 17:309–315.

    Article  CAS  PubMed  Google Scholar 

  10. Sureau A, Gattoni R, Dooghe Y et al. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J 2001; 20:1785–1796.

    Article  CAS  PubMed  Google Scholar 

  11. Cali BM, Anderson P. mRNA surveillance mitigates genetic dominance in caenorhabditis elegans. Mol Gen Genet 1998; 260:176–184.

    Article  CAS  PubMed  Google Scholar 

  12. Maquat LE, Catmichael GG. Quality control of mRNA function. Cell 2001; 104:173–176.

    Article  CAS  PubMed  Google Scholar 

  13. He F, Jacobson A. Endogenous substrates of the yeast NMD pathway. In: Maquat LE, ed. Nonsense-Mediated mRNA Decay. Georgetown: Landes Bioscience, 2006:27-27–41.

    Google Scholar 

  14. Sharifi NA, Dietz HC. Physiologic substrates and functions for mammalian NMD. In: Maquat LE, ed. Nonsense-Mediated mRNA Decay. Georgetown: Landes Bioscience, 2006:97-97–109.

    Google Scholar 

  15. Mendell JT, Sharifi NA, Meyers JL et al. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 2004; 36:1073–1078.

    Article  CAS  PubMed  Google Scholar 

  16. Lewis BP, Green RE, Brenner SE. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 2003; 100:189–192.

    Article  CAS  PubMed  Google Scholar 

  17. Pruitt KD, Maglott DR. RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res 2001; 29:137–140.

    Article  CAS  PubMed  Google Scholar 

  18. Boguski MS, Lowe TM, Tolstoshev CM. dbEST—database for “expressed sequence tags”. Nat Genet 1993; 4:332–333.

    Article  CAS  PubMed  Google Scholar 

  19. Boeckmann B, Bairoch A, Apweiler R et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003; 31:365–370.

    Article  CAS  PubMed  Google Scholar 

  20. Hillman RT, Green RE, Brenner SE. An unappreciated role for RNA surveillance. Genome Biol 2004; 5:R8.

    Article  PubMed  Google Scholar 

  21. Baek D, Green P. Nonsense-mediated decay, sequence conservation and relative isoform frequencies in evolutionarily conserved alternative splicing. Proc Natl Acad Sci USA 2005.

    Google Scholar 

  22. Wittmann H, Jack. hUPF2 silencing identifies physiologic substrates of mammalian nonsense-mediated mRNA decay. Molecular and cellular biology 2006; 26:1272.

    Article  CAS  PubMed  Google Scholar 

  23. Pan Q, Saltzman AL, Kim YK et al. Quantitative microarray profiling provides evidence against wide-spread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes development 2006; 20:153.

    Article  CAS  PubMed  Google Scholar 

  24. Rehwinkel J, Letunic I, Raes J et al. Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 2005; 11:1530.

    Article  CAS  PubMed  Google Scholar 

  25. Ishigaki Y, Li XJ, Serin G et al. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 2001; 106:607–617.

    Article  CAS  PubMed  Google Scholar 

  26. Maquat LE. Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics. Nat Rev Mol cell Biol 2004; 5:89–99.

    Article  CAS  PubMed  Google Scholar 

  27. Cao D, Parker R. Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell 2003; 113:533–545.

    Article  CAS  PubMed  Google Scholar 

  28. Chang AC, Sohlberg B, Trinkle-Mulcahy L et al. Alternative splicing regulates the production of ARD-1 endoribonuclease and NIPP-1, an inhibitor of protein phosphatase-1, as isoforms encoded by the same gene. Gene 1999; 240:45–55.

    Article  CAS  PubMed  Google Scholar 

  29. Veldhoen N, Metcalfe S, Milner J. A novel exon within the mdm2 gene modulates translation initiation in vitro and disrupts the p53-binding domain of mdm2 protein. Oncogene 1999; 18:7026–7033.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Maquat LE. Evidence that translation reinitiation abrogates nonsense-mediated mRNA decay in mammalian cells. EMBO J 1997; 16:826–833.

    Article  CAS  PubMed  Google Scholar 

  31. Chester A, Somasekaram A, Tzimina M et al. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J 2003; 22:3971–3982.

    Article  CAS  PubMed  Google Scholar 

  32. Inácio A, Silva AL, Pinto J et al. Nonsense mutations in close proximity to the initiation codon fail to trigger full nonsense-mediated mRNA decay. J Biol Chem 2004; 279:32170–32180.

    Article  PubMed  CAS  Google Scholar 

  33. Stockklausner C, Breit S, Ncu-Yilik G et al. The uORF-containing thrombopoietin mRNA escapes nonsense-mediated decay (NMD). Nucleic adds research 2006; 34:2355.

    Article  CAS  Google Scholar 

  34. Danckwardt S, Neu-Yilik G, Thermann R et al. Abnormally spliced beta-globin mRNAs: A single point mutation generates transcripts sensitive and insensitive to nonsense-mediated mRNA decay. Blood 2002; 99:1811–1816.

    Article  CAS  PubMed  Google Scholar 

  35. Dreumont N, Maresca A, Boisclair-Lachance JF et al. A minor alternative transcript of the fumarylacetoacetate hydrolase gene produces a protein despite being likely subjected to nonsense-mediated mRNA decay. BMC Mol Biol 2005; 6:1.

    Article  PubMed  CAS  Google Scholar 

  36. McAdams HH, Arkin A. It’s a noisy business! genetic regulation at the nanomolar scale. Trends Genet 1999; 15:65–69.

    Article  CAS  PubMed  Google Scholar 

  37. Jones RB, Wang F, Luo Y et al. The nonsense-mediated decay pathway and mutually exclusive expression of alternatively spliced FGFR2IIIb and-IIIc mRNAs. J Biol Chem 2001; 276:4158–4167.

    Article  CAS  PubMed  Google Scholar 

  38. Yeo GW, Van Nostrand E, Holste D et al. Identification and analysis of alternative splicing events conserved in human and mouse. Proc Natil Acad Sci USA 2005; 102:2850.

    Article  CAS  Google Scholar 

  39. Blencowe BJ. Alternative splicing: New insights from global analyses. Cell 2006; 126:37.

    Article  CAS  PubMed  Google Scholar 

  40. Lareau LF, Green RE, Bhatnagar RS et al. The evolving roles of alternative splicing. Curr Opin Struct Biol 2004; 14:273–282.

    Article  CAS  PubMed  Google Scholar 

  41. Modrek B, Lee CJ. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 2003; 34:177–180.

    Article  CAS  PubMed  Google Scholar 

  42. Kan Z, States D, Gish W. Selecting for functional alternative splices in ESTs. Genome Res 2002; 12:1837–1845.

    Article  CAS  PubMed  Google Scholar 

  43. Neu-Yilik G, Gehring NH, Hentze MW et al. Nonsense-mediated mRNA decay: From vacuum cleaner to swiss army knife. GenomeBiology.com 2004; 5:218.

    PubMed  Google Scholar 

  44. Xing Y, Lee CJ. Negative selection pressure against premature protein truncation is reduced by alternative splicing and diploidy. Trends Genet 2004; 20:472–475.

    Article  CAS  PubMed  Google Scholar 

  45. Horikawa Y, Oda N, Cox NJ et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000; 26:163–175.

    Article  CAS  PubMed  Google Scholar 

  46. Green RE, Lewis BP, Hillman RT et al. Widespread predicted nonsense-mediated mRNA decay of alternatively-spliced transcripts of human normal and disease genes. Bioinformatics 2003; 19(Suppl 1):118–121.

    Article  Google Scholar 

  47. Ule J, Ule A, Spencer J et al. Nova regulates brain-specific splicing to shape the synapse. Nature genetics 2005; 37:844.

    Article  CAS  PubMed  Google Scholar 

  48. Yeo G, Holste D, Kreiman G et al. Variation in alternative splicing across human tissues. GenomeBiology. com 2004; 5:R74.

    PubMed  Google Scholar 

  49. Sugnet CW, Srinivasan K, Clark TA et al. Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLoS Computational Biology 2006; 2:e4.

    Article  PubMed  CAS  Google Scholar 

  50. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003; 72:291–336.

    Article  CAS  PubMed  Google Scholar 

  51. Wagner EJ, Baraniak AP, Sessions OM et al. Characterization of the intronic splicing silencers flanking FGFR2 exon IIIb. J Biol Chem 2005.

    Google Scholar 

  52. Winter J, Lehmann T, Krauss S et al. Regulation of the MID1 protein function is fine-tuned by a complex pattern of alternative splicing. Hum Genet 2004; 114:541–552.

    Article  CAS  PubMed  Google Scholar 

  53. Hyvönen MT, Uimari A, Keinänen TA et al. Polyamine-regulated unproductive splicing and translation of spermidine/spermine N1-acetyltransferase. RNA 2006; 12:1569.

    Article  PubMed  CAS  Google Scholar 

  54. Philips AV, Timchenko LT, Cooper TA. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 1998; 280:737–741.

    Article  CAS  PubMed  Google Scholar 

  55. Brook JD, McCurrach ME, Harley HG et al. Molecular basis of myotonic dystrophy; Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 1992; 68:799–808.

    Article  CAS  PubMed  Google Scholar 

  56. Liquori CL, Ricker K, Moseley ML et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001; 293:864–867.

    Article  CAS  PubMed  Google Scholar 

  57. Charlet BN, Savkur RS, Singh G et al. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 2002; 10:45–53.

    Article  Google Scholar 

  58. Mankodi A, Takahashi MP, Jiang H et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 2002; 10:35–44.

    Article  CAS  PubMed  Google Scholar 

  59. Ho TH, Bundam D, Armstrong DL. Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Human molecular genetics 2005; 14:1539.

    Article  CAS  PubMed  Google Scholar 

  60. Ranum LPW, Cooper TA. RNA-mediated neuromuscular disorders. Annual review of neuroscience 2006; 29:259.

    Article  CAS  PubMed  Google Scholar 

  61. Ladd AN, Stenberg MG, Swanson MS et al. Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Developmental dynamics 2005; 233:783.

    Article  CAS  PubMed  Google Scholar 

  62. Vilardell J, Chartrand P, Singer RH et al. The odyssey of a regulated transcript. RNA 2000; 6:1773–1780.

    Article  CAS  PubMed  Google Scholar 

  63. He F, Peltz SW, Donahue JL et al. Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upflmutant. Proc Natl Acad Sci USA 1993; 90:7034–7038.

    Article  CAS  PubMed  Google Scholar 

  64. Mitrovich QM, Anderson P. Unproductively spliced ribosomal protein mRNAs are natural targets of mRNA surveillance in C. elegans. Genes Dev 2000; 14:2173–2184.

    Article  CAS  PubMed  Google Scholar 

  65. Valcárcel J, Gebauer F. Post-transcriptional regulation: The dawn of PTB. Curr Biol 1997; 7:R705–R708.

    Article  PubMed  Google Scholar 

  66. Gherri A, Piñol-Roma S, Michael WM et al. hnRNP I, the polypyrimidine tract-binding protein: Distinct nuclear localization and association with hnRNAs. Nucleic Acids Res 1992; 20:3671–3678.

    Article  Google Scholar 

  67. Wollerton MC, Gooding C, Wagner EJ et al. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol Cell 2004; 13:91–100.

    Article  CAS  PubMed  Google Scholar 

  68. Hamilton BJ, Genin A, Cron RQ et al. Delineation of a novel pathway that regulates CD154 (CD40 ligand) expression. Mol Cell Biol 2003; 23:510–525.

    Article  CAS  PubMed  Google Scholar 

  69. Rahman L, Bliskovski V, Reinhold W et al. Alternative splicing of brain-specific PTB defines a tissue-specific isoform pattern that predicts distinct functional roles. Genomics 2002; 80:245–249.

    Article  CAS  PubMed  Google Scholar 

  70. Spellman R, Rideau A, Marlin A et al. Regulation of alternative splicing by PTB and associated factors. Biochem Soc Trans 2005; 33:457–460.

    Article  CAS  PubMed  Google Scholar 

  71. Duncan PI, Stojdl DF, Marius RM et al. In vivo regulation of alternative pre-mRNA splicing by the Clk1 protein kinase. Mol Cell Biol 1997; 17:5996–6001.

    CAS  PubMed  Google Scholar 

  72. Menegay HJ, Myers MP, Moeslein FM et al. Biochemical characterization and localization of the dual specificity kinase CLK1. J Cell Sci 2000, 113(Pt 18):3241–3253.

    CAS  PubMed  Google Scholar 

  73. Staiger D, Zecca L, Wieczorek Kirk DA et al. The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J 2003; 33:361–371.

    Article  CAS  PubMed  Google Scholar 

  74. Conti E, Izaurralde E, Nonsense-mediated mRNA decay: Molecular insights and mechanistic variations across species. Curr Opin Cell Biol 2005; 17:316–325.

    Article  CAS  PubMed  Google Scholar 

  75. Amrani N, Ganesan R, Kervestin S et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 2004; 432:112–118.

    Article  CAS  PubMed  Google Scholar 

  76. Gatfield D, Unterholzner L, Ciccarelli FD et al. Nonsense-mediated mRNA decay in drosophila: At the intersection of the yeast and mammalian pathways. EMBO J 2003; 22:3960–3970.

    Article  CAS  PubMed  Google Scholar 

  77. Arciga-Reyes L, Wootton L, Kieffer M et al. UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in arabidopsis. The plant journal 2006; 47:480.

    Article  CAS  PubMed  Google Scholar 

  78. Lamba JK, Adachi M, Sun D et al. Nonsense mediated decay downregulates conserved alternatively spaced ABCC4 transcripts bearing nonsense codons. Hum Mol Genet 2003; 12:99–109.

    Article  CAS  PubMed  Google Scholar 

  79. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature 2001; 409:860–921.

    Article  CAS  PubMed  Google Scholar 

  80. Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 1995; 9:184–190.

    Article  CAS  PubMed  Google Scholar 

  81. Bingham PM, Chou TB, Mims I et al. On/off regulation of gene expression at the level of splicing. Trends Genet 1988; 4:134–138.

    Article  CAS  PubMed  Google Scholar 

  82. Ge H, Zuo P, Manley JL. Primary structure of the human splicing factor ASF reveals similarities with drosophila regulators. Cell 1991; 66:373–382.

    Article  CAS  PubMed  Google Scholar 

  83. Hilleren P, Parker R. Mechanisms of mRNA surveillance in eukaryotes. Annu Rev Genet 1999; 33:229–260.

    Article  CAS  PubMed  Google Scholar 

  84. Skandalis A, Uribe E. A survey of splice variants of the human hypoxanthine phosphoribosyl transferase and DNA polymerase beta genes: Products of alternative or aberrant splicing? Nucleic Acids Res 2004; 32:6557–6564.

    Article  CAS  PubMed  Google Scholar 

  85. Carter MS, Li S, Wilkinson MF. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J 1996; 15:5965–5975.

    CAS  PubMed  Google Scholar 

  86. Wang J, Vock VM, Li S et al. A quality control pathway that down-regulates aberrant T-cell receptor (TCR) transcripts by a mechanism requiring UPF2 and translation. J Biol Chem 2002; 277:18489–18493.

    Article  CAS  PubMed  Google Scholar 

  87. Hovhannisyan RH, Carstens RP. A novel intronic cis element, ISE/ISS-3, regulates rat fibroblast growth factor receptor 2 splicing through activation of an upstream exon and repression of a downstream exon containing a noncanonical branch point sequence. Mol Cell Biol 2005; 25:250–263.

    Article  CAS  PubMed  Google Scholar 

  88. Mitrovich QM, Anderson P. mRNA surveillance of expressed pseudogenes in C. elegans. Current biology 2005; 15:963.

    Article  CAS  PubMed  Google Scholar 

  89. Blanchette M, Labourier E, Green RE et al. Genome-wide analysis reveals an unexpected function for the drosophila splicing factor U2AF(50) in the nuclear export of intronless mRNAs. Mol Cell 2004; 14:775–786.

    Article  CAS  PubMed  Google Scholar 

  90. Cazalla D, Newton K, Cáceres JF. A novel SR-related protein is required for the second step of pre-mRNA splicing. Mol Cell Biol 2005; 25:2969–2980.

    Article  CAS  PubMed  Google Scholar 

  91. Henscheid KL, Shin DS, Cary SC et al. The splicing factor U2AF65 is functionally conserved in the thermotolerant deep-sea worm Alvinella pompejana. Biochim Biophys Acta 2005.

    Google Scholar 

  92. Lallena MJ, Chalmers KJ, Llamazares S et al. Splicing regulation at the second catalytic step by sex-lethal involves 3′ splice site recognition by SPF45. Cell 2002; 109:285–296.

    Article  CAS  PubMed  Google Scholar 

  93. Pacheco TR, Gomes AQ, Barbosa-Morais NL et al. Diversity of vertebrate splicing factor U2AF35: Identification of alternatively spliced U2AF1 mRNAS. J Biol Chem 2004; 279:27039–27049.

    Article  CAS  PubMed  Google Scholar 

  94. Confaloni A, Crestini A, Albani D et al. Rat nicastrin gene: CDNA isolation, mRNA variants and expression pattern analysis. Brain Res Mol Brain Res 2005; 136:12–22.

    Article  CAS  PubMed  Google Scholar 

  95. Engebrecht JA, Voelkel-Meiman K, Reeder GS. Meiosis-specific RNA splicing in yeast. Cell 1991; 66:1257–1268.

    Article  CAS  PubMed  Google Scholar 

  96. Tsyba L, Skrypkina I, Rynditch A et al. Alternative splicing of mammalian intersectin 1: Domain associations and tissue specificities, Genomics 2004; 84:106–113.

    Article  CAS  PubMed  Google Scholar 

  97. Petruzzella V, Panelli D, Torraco A et al. Mutations in the NDUFS4 gene of mitochondrial complex I alter stability of the splice variants. FEBS Lett 2005.

    Google Scholar 

  98. Screaton GR, Xu XN, Olsen AL et al. LARD: A new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci USA 1997; 94:4615–4619.

    Article  CAS  PubMed  Google Scholar 

  99. Cuccurese M, Russo G, Rosso A et al. Alternative splicing and nonsense-mediated mRNA decay regulate mammalian ribosomal gene expression. Nucleic Acids Res 2005; 33:5965.

    Article  CAS  PubMed  Google Scholar 

  100. Le Guiner C, Gesnel MC, Breathnach R. TIA-1 or TIAR is required for DT40 cell viability. J Biol Chem 2003; 278:10465–10476.

    Article  CAS  Google Scholar 

  101. Colwill K, Pawson T, Andrews B et al. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J 1996; 15:265–275.

    CAS  PubMed  Google Scholar 

  102. Duncan PI, Stojdl DF, Marius RM et al. The Clk2 and Clk3 dual-specificity protein kinases regulate the intranuclear distribution of SR proteins and influence pre-mRNA splicing. Exp Cell Res 1998; 241:300–308.

    Article  CAS  PubMed  Google Scholar 

  103. Wilson GM, Sun Y, Sellers J et al. Regulation of AUF1 expression via conserved alternatively spliced elements in the 3′ untranslated region. Mol Cell Biol 1999; 19:4056–4064.

    CAS  PubMed  Google Scholar 

  104. Wilson GM, Brewer G. The search for trans-acting factors controlling messenger RNA decay. Prog Nucleic Acid Res Mol Biol 1999; 62:257–291.

    Article  CAS  PubMed  Google Scholar 

  105. Morrison M, Harris KS, Roth MB. Smg mutants affect the expression of alternatively spliced SR protein mRNAs in caenorhabditis elegans. Proc Natl Acad Sci USA 1997; 94:9782–9785.

    Article  CAS  PubMed  Google Scholar 

  106. Stoilov P, Daoud R, Nayler O et al. Human tra2-beta1 autoregulates its protein concentration by influencing alternative splicing of its pre-mRNA. Hum Mol Genet 2004; 13:509–524.

    Article  CAS  PubMed  Google Scholar 

  107. Lareau LF, Inada M, Green RE et al. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 2007; 446:926–929.

    Article  CAS  PubMed  Google Scholar 

  108. Ni JZ, Grate L, Donahue JP et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev 2007; 21:708–718.

    Article  CAS  PubMed  Google Scholar 

  109. Soergel DAW, Lareau LF, Brenner SE. Regulation of gene expression by the coupling of alternative splicing and nonsense-mediated mRNA decay. In: Maquat LE, ed. Nonsense-Mediated mRNA Decay. Goergetown: Landes Bioscience 2006:175–196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lareau, L.F., Brooks, A.N., Soergel, D.A.W., Meng, Q., Brenner, S.E. (2007). The Coupling of Alternative Splicing and Nonsense-Mediated mRNA Decay. In: Blencowe, B.J., Graveley, B.R. (eds) Alternative Splicing in the Postgenomic Era. Advances in Experimental Medicine and Biology, vol 623. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77374-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77374-2_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-77373-5

  • Online ISBN: 978-0-387-77374-2

Publish with us

Policies and ethics