Skip to main content

Duplications and Turnover in Plant Genomes

  • Chapter
  • First Online:
Plant Genome Diversity Volume 1

Abstract

Cytologists have long documented differences in chromosome number and organization among plants, but the truly dynamic nature of plant genome evolution is only becoming apparent with fully sequenced and assembled genomes. A major result of these new data is that duplication—of single genes, chromosomes, and whole genomes—is a major force in the evolution of plant genome structure and content. For example, genomic comparisons among divergent animals are able to recover significant signatures of synteny (Hiller et al. 2004), but less divergent flowering plant genomes often demonstrate relatively lower large-scale collinearity because of cycles of polyploidy and diploidization (Tang et al. 2008; Salse et al. 2009). Among individuals and closely related species, copy number variation and changes in gene family size are now recognized as critical sources of genetic variation (Lynch 2007). Duplication and subsequent resolution have yielded a continually changing genome whose elements are constantly turning-over. Although gene and genome duplication has long garnered attention as a potentially important source of evolutionary novelty (Haldane 1933; Stebbins 1950; Ohno 1970), the perspective of a dynamic plant genome fueled by duplication and loss stands in contrast to classical concepts of a largely stable genome. In this chapter we provide an overview of how duplication-driven genomic turn-over has influenced the evolution and diversity of plant genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams KL, Cronn R, Percifield R, Wendel J (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 100:4649–4654

    Article  PubMed  CAS  Google Scholar 

  • Ameline-Torregrosa C, Wang B-B, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21

    Article  PubMed  CAS  Google Scholar 

  • Banks JA et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963

    Article  PubMed  CAS  Google Scholar 

  • Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH (2008) Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol Biol Evol 25:2445–2455

    Article  PubMed  CAS  Google Scholar 

  • Barker MS, Vogel H, Schranz ME (2009) Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol 1:391–399

    Article  PubMed  CAS  Google Scholar 

  • Bekaert M, Edger PP, Pires JC, Conant GC (2011) Two phase resolution of polyploidy in Arabidopsis metabolic network gives rise to relative and absolute dosage constraints. Plant Cell 23:1719–1728

    Article  PubMed  CAS  Google Scholar 

  • Belling J, Blakeslee AF (1924) The configurations and sizes of the chromosomes in trivalents of 25-chromosome Daturas. Proc Natl Acad Sci U S A 10:116–120

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Bhadra MP, Auger DL (2001) Dosage-dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes, and quantitative traits. Dev Biol 234:275–288

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee AF (1921) Types of mutations and their possible significance in evolution. Am Nat 5:254–267

    Article  Google Scholar 

  • Blakeslee AF, Avery BT (1919) Mutations in the Jimson weed. J Hered 10:111–120

    Google Scholar 

  • Blakeslee AF, Belling J, Farnham ME (1920) Chromosomal duplication and Mendelian phenomena in Datura mutants. Science 52:388–390

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004a) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004b) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Bradley D, Carpenter R, Sommer H, Hatley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72:85–95

    Article  PubMed  CAS  Google Scholar 

  • Byun-McKay SA, Geeta R (2007) Protein subcellular relocalization: a new perspective on the origin of novel genes. Trends Ecol Evol 22:338–344

    Article  PubMed  Google Scholar 

  • Byun-McKay SA, Geeta R, Duggan R, Carroll B, McKay SJ (2009) Missing the subcellular target: a mechanism of eukaryotic gene evolution. In: Pontarotti P (ed) Evolutionary biology: concept, modeling, and application. Springer, Berlin/Heidelberg/New York, pp 175–183

    Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  Google Scholar 

  • Casneuf T, De Bolt S, Raes J, Maere S, Van de Peer Y (2006) Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana. Genome Biol 7:R13

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel J (2009) Reciprocal silencing, transcriptional bias and functional divergence of homoeologs in polyploid cotton (Gossypium). Genetics 182:503–517

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes M, Eber F, Lucas M-O, Lode M, Chèvre A-M, Jenczewski E (2010) Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Plant Cell 22:2265–2276

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    Article  PubMed  CAS  Google Scholar 

  • Cronn RC, Small RL, Haselkorn T, Wendel J (2002) Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot 89:707–725

    Article  PubMed  CAS  Google Scholar 

  • Cui LY, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, dePamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    Article  PubMed  CAS  Google Scholar 

  • Des Marais DL, Rausher MD (2008) Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454:762–765

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  PubMed  CAS  Google Scholar 

  • Duarte JM, Cui L, Wall PK, Zhang Q, Zhang X, Leebens-Mack J, Ma H, Altman N, dePamphilis CW (2006) Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol Biol Evol 23:467–478

    Google Scholar 

  • Edger PP, Pires JC (2009) Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res 17:699–717

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  PubMed  CAS  Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    Article  PubMed  CAS  Google Scholar 

  • Freeling M, Lyons E, Pederson B, Alam M, Ming R, Lisch D (2008) Many or most genes in Arabidopsis transposed after the origin of the order Brassicales. Genome Res 18:1924–1937

    Article  PubMed  CAS  Google Scholar 

  • Ganko EW, Meyers BC, Vision TJ (2007) Divergence in expression between duplicated genes in Arabidopsis. Mol Biol Evol 24:2298–2309

    Article  PubMed  CAS  Google Scholar 

  • Haas BJ et al (2005) Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol 3:7

    Article  PubMed  CAS  Google Scholar 

  • Haberer G, Hindemitt T, Meyers BC, Mayer KFX (2004) Transcriptional similarities, dissimilarities, and conservation of cis-elements in duplicated genes of Arabidopsis. Plant Physiol 136:3009–3022

    Article  PubMed  CAS  Google Scholar 

  • Hahn MW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100:605–617

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1933) The part played by recurrent mutation in evolution. Am Nat 67:5–9

    Article  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  PubMed  CAS  Google Scholar 

  • Harland SC (1936) The genetical conception of the species. Camb Philos Soc Biol Rev 11:83–112

    Article  Google Scholar 

  • Hiller LDW et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  CAS  Google Scholar 

  • Hoen DR, Park KC, Elrouby N, Yu Z, Mohabir N, Cowan RK, Bureau TE (2006) Transposon-mediated expansion and diversification of a family of ULP-like genes. Mol Biol Evol 23:1254–1268

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B Biol Sci 256:119–124

    Article  CAS  Google Scholar 

  • Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderball AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Llang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  PubMed  CAS  Google Scholar 

  • Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE (2005) The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res 15:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Kawabe A, Fujimoto R, Charlesworth D (2007) High diversity due to balancing selection in the promoter region of the Medea gene in Arabidopsis lyrata. Curr Biol 17:1885–1889

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Koh J, Soltis PS, Soltis DE (2010) Homeolog loss and expression changes in natural populations of the recently and repeatedly formed allotetraploid Tragopogon mirus (Asteraceae). BMC Genomics 11:97

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 95:207–217

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Zhang H, Ge S, Gu X, Gao G, Luo J (2009) Expression pattern divergence of duplicated gene in rice. BMC Bioinformatics 10:S8

    Article  CAS  Google Scholar 

  • Liang H, Plazonic KR, Chen J, Li WH, Fernández A (2008) Protein under-wrapping causes dosage sensitivity and decreases gene duplicability. PLoS Genet 4:e11

    Article  PubMed  CAS  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763

    Article  PubMed  CAS  Google Scholar 

  • Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, Srubarova H, Kovarik A, Pires JC, Xiong Z, Leitch AR (2008) Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS One 3:e3353

    Article  PubMed  CAS  Google Scholar 

  • Liu S-L, Adams KL (2010) Dramatic change in function and expression pattern of a gene duplicated by polyploidy created a paternal effect gene in the Brassicaceae. Mol Biol Evol 27:2817–2828

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    Article  PubMed  CAS  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus. Plant Physiol 140:336–348

    Article  PubMed  CAS  Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinnauer, Sunderland

    Google Scholar 

  • Lynch M, Conery JS (2003) The evolutionary demography of duplicate genes. J Struct Funct Genomics 3:35–44

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Force AG (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156:590–605

    Article  Google Scholar 

  • Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A 103:5224–5229

    Article  PubMed  CAS  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A 102:5454–5459

    Article  PubMed  CAS  Google Scholar 

  • Mandáková T, Joly S, Krzywinksi M, Mummenhoff K, Lysak MA (2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277–2290

    Article  PubMed  CAS  Google Scholar 

  • Matsuno M, Compagnon V, Schoch GA, Schmitt M, Debayle D, Bassard J-E, Pollet B, Hehn A, Heintz D, Ullmann P, Lapierre C, Bernier F, Ehlting J, Werck-Reichhart D (2009) Evolution of a novel phenolic pathway for pollen development. Science 325:1688–1692

    Article  PubMed  CAS  Google Scholar 

  • Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257

    Article  PubMed  CAS  Google Scholar 

  • Mena M, Ambrose BA, Meeley RB, Briggs SP, Yanofsky MF, Schmidt RJ (1996) Diversification of C function activity in maize flower development. Science 274:1537–1540

    Article  PubMed  CAS  Google Scholar 

  • Miyake T, Takebayashi N, Wolf DE (2009) Possible diversifying selection in the imprinted gene, MEDEA, in Arabidopsis. Mol Biol Evol 26:843–857

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Ohta T (1987) Simulating evolution by gene duplication. Genetics 115:207–213

    PubMed  CAS  Google Scholar 

  • Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, van der Winden J, Matzke M, Matzke AJM (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132:1382–1390

    Article  PubMed  CAS  Google Scholar 

  • Pfeil BE, Schlueter JA, Shoemaker RC, Doyle JJ (2005) Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Syst Biol 54:441–454

    Article  PubMed  CAS  Google Scholar 

  • Rizzon C, Ponger L, Gaut BS (2006) Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol 2:e115

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009) Reconstruction of monocotyledonous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci U S A 106:14908–14913

    Article  PubMed  CAS  Google Scholar 

  • Sankoff D, Zheng C, Zhu Q (2010) The collapse of gene complement following whole genome duplication. BMC Genomics 11:313

    Article  PubMed  CAS  Google Scholar 

  • Schmutz J et al (2010) Genome sequence of the paleopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schranz ME, Edger PP, Pires JC, van Dam N, Wheat CW (2011) Comparative genomics in the Brassicales: ancient genome duplications, glucosinolate diversification and Pierinae herbivore radiation. In: Edwards D, Batley J, Parkin I, Kole C (eds) Oilseeds: genetics, genomics, and breeding of oilseed brassicas. Science, Boca Raton

    Google Scholar 

  • Schuermann D, Molinier J, Fritsch O, Hohn B (2005) The dual nature of homologous recombination in plants. Trends Genet 21:172–181

    Article  PubMed  CAS  Google Scholar 

  • SĂ©mon M, Wolfe KH (2007) Consequences of genome duplication. Curr Opin Genet Dev 17:505–512

    Article  PubMed  CAS  Google Scholar 

  • Senchina DS, Alvarez I, Cronn RC, Liu B, Rong J, Noyes RD, Paterson AH, Wing RA, Wilkind TA, Wendel J (2003) Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20:633–643

    Article  PubMed  CAS  Google Scholar 

  • Shi T, Huang H, Barker MS (2010) Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Ann Bot 106:497–504

    Article  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485–501

    Article  Google Scholar 

  • Spillane C, Schmid KJ, LaoueillĂ©-Duprat S, Pien S, Escobar-Restrepo J-M, Baroux C, Gagliardini V, Page DR, Wolfe KH, Gossniklaus U (2007) Positive Darwinian selection at the imprinted MEDEA locus in plants. Nature 448:349–352

    Article  PubMed  CAS  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, Reading

    Google Scholar 

  • Stephens SG (1951) Possible significance of duplication in evolution. Adv Genet 4:247–265

    Article  PubMed  CAS  Google Scholar 

  • Tang HB, Bowers JE, Wang XY, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488

    Article  PubMed  CAS  Google Scholar 

  • Thomas BC, Pedersen B, Freeling M (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16:934–946

    Article  PubMed  CAS  Google Scholar 

  • Throude M, Bolot S, Bosio M, Pont C, Sarda X, Quraishi UM, Bourgis F, Lessard P, Rogowsky P, Ghesquiere A, Murigneux A, Charmet G, Perez P, Salse J (2008) Structure and expression analysis of rice paleo duplications. Nucleic Acids Res 37:1248–1259

    Article  CAS  Google Scholar 

  • Tian C, Xiong Y, Liu T, Sun S, Chan L, Chen M (2005) Evidence for an ancient whole-genome duplication event in rice and other cereals. Acta Genet Sin 32:519–527

    PubMed  CAS  Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Veitia RA (2002) Exploring the etiology of haploinsuffinciency. Bioessays 24:175–184

    Article  PubMed  CAS  Google Scholar 

  • Veitia RA (2003) Nonlinear effects in macromolecular assembly and dosage sensitivity. J Theor Biol 220:19–25

    Article  PubMed  CAS  Google Scholar 

  • Veitia RA (2005) Paralogs in polyploids: one for all and all for one? Plant Cell 17:4–11

    Article  PubMed  CAS  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Wagner WH (1970) Biosystematics and evolutionary noise. Taxon 19:146–151

    Article  Google Scholar 

  • Walsh JB (1995) How often do duplicated genes evolve new functions? Genetics 139:421–428

    PubMed  CAS  Google Scholar 

  • Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    Article  PubMed  CAS  Google Scholar 

  • Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci U S A 106:13875–13879

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse MR, Schnable JC, Pedersen BS, Lyons E, Lisch D, Subramaniam S, Freeling M (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. PLoS Biol 8(6):e1000409

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  PubMed  CAS  Google Scholar 

  • Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci U S A 108:7908–7913

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  PubMed  CAS  Google Scholar 

  • Zou C, Lehti-Shiu MD, Thomashow M, Shiu S-H (2009) Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana. PLoS Genet 5:e1000581

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Barker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Verlag Wien

About this chapter

Cite this chapter

Barker, M.S., Baute, G.J., Liu, SL. (2012). Duplications and Turnover in Plant Genomes. In: Wendel, J., Greilhuber, J., Dolezel, J., Leitch, I. (eds) Plant Genome Diversity Volume 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1130-7_11

Download citation

Publish with us

Policies and ethics