Skip to main content
Log in

Stability and Monotonicity of Lotka–Volterra Type Operators

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In the present paper, we investigate stability of trajectories of Lotka–Volterra (LV) type operators defined in finite dimensional simplex. We prove that any LV type operator is a surjection of the simplex. It is introduced a new class of LV-type operators, called MLV type ones, and we show that trajectories of the introduced operators converge. Moreover, we show that such kind of operators have totally different behavior than \({\mathbf {f}}\)-monotone LV type operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, S.N.: The solution of a mathematical problem concerning the theory of heredity. Ucheniye-Zapiski N.-I. Kaf. Ukr. Otd. Mat. 1, 83–115 (1924). (Russian)

    Google Scholar 

  2. Basson, M., Fogarty, M.J.: Harvesting in discrete-time predator-prey systems. Math. Biosci. 141, 41–74 (1997)

    Article  MATH  Google Scholar 

  3. Cairo, L., Llibre, J.: Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2. Nonlinear Anal. 67, 327–348 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dimitrova, Z.I., Vitanov, N.K.: Dynamical consequences of adaptation of the growth rates in a system of three competing populations. J. Phys. A Math. Gen. 34, 7459–7473 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dohtani, A.: Occurrence of chaos in higher-dimensional discrete-time systems. SIAM J. Appl. Math. 52, 1707–1721 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farkas, H., Noszticzius, Z., Savage, C.R., Schelly, Z.Z.: Two-dimensional explodators: II. Global analysis of the Lotka–Volterra–Brusselator (LVB) model. Acta Phys. Hung. 66, 203–207 (1990)

    MathSciNet  Google Scholar 

  7. Fisher, M.E., Goh, B.S.: Stability in a class of discrete-time models of interacting populations. J. Math. Biol. 4, 265–274 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ganikhodzhaev, R.N.: Quadratic stochastic operators, Lyapunov functions and tournaments. Russ. Acad. Sci. Sb. Math. 76, 489–506 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Ganikhodzhaev, R.N., Mukhamedov, F., Rozikov, U.: Quadratic stochastic operators and processes: results and open problems. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14, 279–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ganikhodzhaev, R.N., Saburov, M.K.: A Generalized model of the nonlinear operators of Volterra type and Lyapunov functions. J. Sib. Fed. Univ. Math. Phys. 1(N 2), 188–196 (2008)

    Google Scholar 

  11. Gine, J., Romanovski, V.G.: Linearizability conditions for Lotka–Volterra planar complex cubic systems. J. Phys. A Math. Theor. 42, 225206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goel, M.S., Maitra, S.C., Montroll, E.W.: On the Volterra and other nonlinear models of interacting populations. Rev. Mod. Phys. 43, 231–276 (1971)

    Article  MathSciNet  Google Scholar 

  13. Hernandez-Bermejo, B., Brenig, L.: Quasipolynomial generalization of Lotka–Volterra mappings. J. Phys. A 35, 5453–5469 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hernandez-Bermejo, B., Brenig, L.: Some global results on quasipolynomial discrete systems. Nonlinear Anal. Real World Appl. 7, 486–496 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hofbauer, J., Hutson, V., Jansen, W.: Coexistence for systems governed by difference equations of Lotka–Volterra type. J. Math. Biol. 25, 553–570 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  17. Kelley, J.L.: General Topology, Graduate Texts in Mathematics, vol. 27. Springer, Berlin (1975)

    Google Scholar 

  18. Lin, J., Kahn, P.B.: Limit cycles in random environments. SIAM J. Appl. Math. 32, 260–291 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lotka, A.J.: Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595–1599 (1920)

    Article  Google Scholar 

  20. Lu, Z., Wang, W.: Permanence and global attractivity for Lotka–Volterra difference systems. J. Math. Biol. 39, 269–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lyubich, Y.I.: Mathematical structures in population genetics. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  22. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  23. May, R.M., Oster, G.F.: Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110, 573–599 (1976)

    Article  Google Scholar 

  24. Moran, P.A.P.: Some remarks on animal population dynamics. Biometrics 6, 250–258 (1950)

    Article  Google Scholar 

  25. Mukhamedov, F., Ganikhozhaev, N.: Quantum quadratic operators and processes. In: Lecture Notes in Mathematics, vol. 2133. Springer International Publishing (2015). doi:10.1007/978-3-319-22837-2

  26. Mukhamedov, F., Saburov, M.: On homotopy of volterrian quadratic stochastic operator. Appl. Math. Inform. Sci. 4, 47–62 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Mukhamedov, F., Saburov, M.: On dynamics of Lotka–Volterra type operators. Bull. Malays. Math. Sci. Soc. 37, 59–64 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Mukhamedov, F., Saburov, M., Qaralleh, I.: On \(\xi ^{(s)}\)-quadratic stochastic operators on two-dimensional simplex and their behavior. Abstr. Appl. Anal. 2013, 942038 (2013)

  29. Muroya, Y.: Persistence and global stability for discrete models of nonautonomous Lotka–Volterra type. J. Math. Anal. Appl. 273, 492–511 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Muroya, Y.: Persistence and global stability in discrete models of Lotka–Volterra type. J. Math. Anal. Appl. 330, 24–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Narendra, S.G., Samaresh, C.M., Elliott, W.M.: On the Volterra and other nonlinear moldes of interacting populations. Rev. Mod. Phys. 43, 231–276 (1971)

    Article  Google Scholar 

  32. Nirenberg, L.: Topics in Nonlinear Functional Analysis. American Mathematical Society, New York (1974)

    MATH  Google Scholar 

  33. Plank, M., Losert, V.: Hamiltonian structures for the n-dimensional Lotka–Volterra equations. J. Math. Phys. 36, 3520–3543 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rozikov, U.A., Hamraev, A.Y.: On a cubic operator defined in finite dimensional simplex. Ukr. Math. J. 56, 1418–1427 (2004)

    Article  Google Scholar 

  35. Saburov, M.: A class of nonergodic LotkaVolterra operators. Math. Notes 97, 759–763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saito, Y., Hara, T., Ma, W.: Necessary and sufficient conditions for permanence and global stability of a Lotka–Volterra system with two delays. J. Math. Anal. Appl. 236, 534–556 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Steenrod, N., Eiberleng, S.: Foundations of Algabraic Topology. Princeton University Press, Princeton (1958)

    Google Scholar 

  38. Takeuchi, Y.: Global Dynamical Properties of Lotka–Volterra Systems. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  39. Teschl, G.: Nonlinear Functional Analysis. Vienna University, Wien (2004)

    Google Scholar 

  40. Udwadia, F.E., Raju, N.: Some global properties of a pair of coupled maps: quasi-symmetry, periodicity and syncronicity. Phys. D 111, 16–26 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, New York (1960)

    MATH  Google Scholar 

  42. Vallander, S.S.: On the limit behavior of iteration sequence of certain quadratic transformations. Soviet Math. Doklady 13, 123–126 (1972)

    MATH  Google Scholar 

  43. Volterra, V.: Lois de fluctuation de la population de plusieurs espèces coexistant dans le même milieu. Assoc. Franc. Lyon 1926(1927), 96–98 (1926)

    MATH  Google Scholar 

  44. Volterra, V.: Lecons sur la Theorie Mathematique de la Lutte Pour la vie. Gauthiers–Villars, Paris (1931)

    MATH  Google Scholar 

  45. Zakharevich, M.I.: On a limit behavior and ergodic hypothesis for quadratic mappings of a simplex. Russ. Math. Surv. 33, 207–208 (1978). (Russian)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the MOHE Grant ERGS13-024-0057, and the authors are also grateful the Junior Associate scheme of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Mukhamedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedov, F., Saburov, M. Stability and Monotonicity of Lotka–Volterra Type Operators. Qual. Theory Dyn. Syst. 16, 249–267 (2017). https://doi.org/10.1007/s12346-016-0190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-016-0190-3

Keywords

Mathematics Subject Classification

Navigation