Skip to main content
Log in

Invariance Preserving Discretization Methods of Dynamical Systems

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider local and uniform invariance preserving steplength thresholds on a set when a discretization method is applied to a linear or nonlinear dynamical system. For the forward or backward Euler method, the existence of local and uniform invariance preserving steplength thresholds is proven when the invariant sets are polyhedra, ellipsoids, or Lorenz cones. Further, we also quantify the steplength thresholds of the backward Euler methods on these sets for linear dynamical systems. Finally, we present our main results on the existence of uniform invariance preserving steplength threshold of general discretization methods on general convex sets, compact sets, and proper cones both for linear and nonlinear dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In particular, this condition requires that if xk is in the set, then xk+ 1 is in the interior of the set.

  2. A Lorenz cone can also be referred to as an ice cream cone, or a second-order cone.

  3. Inertia{Q} = {a, b, c} means that matrix Q has a positive eigenvalues, b zero eigenvalues, and c negative eigenvalues.

  4. A point \(x\in \mathcal {S}\) is called a relative interior point of \(\mathcal {S}\) if x is an interior point of \(\mathcal {S}\) relative to \(\text {aff}(\mathcal {S})\), where \(\text {aff}(\mathcal {S})\) is the smallest affine subspace containing \(\mathcal {S}\). Then, \(\text {ri}(\mathcal {S})\) is defined as the set of all the relative interior points of \(\mathcal {S}\), and \(\text {rb}(\mathcal {S})\) is defined as \(\text {cl}(\mathcal {S})\backslash \text {ri}(\mathcal {S})\) (see [23, p. 44]).

  5. In practice, a possible way to obtain a base can be chosen as follows: we first take a hyperplane through the origin that intersects \(\mathcal {C}\) only by the origin. Then, shift the hyperplane to x, where x is an interior point of \(\mathcal {C}\). The intersection of the shifted hyperplane and \(\mathcal {C}\) is a base of \(\mathcal {C}\). The base of \(\mathcal {C}\) is a compact set.

  6. The dual of cone \(\mathcal {C}\) is defined as \(\mathcal {C}^{\ast }=\{y|y^{T}x\geq 0\text { for all } x\in \mathcal {C}\}\).

References

  1. Baker Jr., G.A., Graves-Morris, P.: Padé Approximants. Cambridge University Press, New York (1996)

    Book  Google Scholar 

  2. Barvinok, A.: A Course in Convexity. American Mathematical Society, Providence (2002)

    Book  Google Scholar 

  3. Blanchini, F.: Constrained control for uncertain linear systems. Int. J. Optim. Theory Appl. 71, 465–484 (1991)

    Article  MathSciNet  Google Scholar 

  4. Blanchini, F.: Set invariance in control. Automatica 35, 1747–1767 (1999)

    Article  MathSciNet  Google Scholar 

  5. Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  6. Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problèmes d’évolution paraboliques. RAIRO Anal. Numér. 12, 237–245 (1978)

    Article  MathSciNet  Google Scholar 

  7. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, vol. 15. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  8. Castelan, E.B., Hennet, J.C.: On invariant polyhedra of continuous-time linear systems. IEEE Trans. Autom. Control 38, 1680–1685 (1993)

    Article  MathSciNet  Google Scholar 

  9. d’Alessandro, P., De Santis, E.: Controlled invariance and feedback laws. IEEE Trans. Autom. Control 46, 1141–1146 (2001)

    Article  MathSciNet  Google Scholar 

  10. Dórea, C.E.T., Hennet, J.C.: (A, B)-invariant polyhedral sets of linear discrete-time systems. J. Optim. Theory Appl. 103, 521–542 (1999)

    Article  MathSciNet  Google Scholar 

  11. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  12. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)

    Book  Google Scholar 

  13. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

  14. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  15. Horváth, Z.: On the positivity of matrix-vector products. Linear Algebra Appl. 393, 253–258 (2004)

    Article  MathSciNet  Google Scholar 

  16. Horváth, Z.: On the positivity step size threshold of Runge–Kutta methods. Appl. Numer. Math. 53, 341–356 (2005)

    Article  MathSciNet  Google Scholar 

  17. Horváth, Z.: Invariant cones and polyhedra for dynamical systems. In: Kása, Z., Kassay, G., Kolumbán, J (eds.) Proceedings of the International Conference in Memoriam Gyula Farkas, August 23–26, 2005, Cluj-Napoca, Romania, pp 65–74. Cluj University Press, Cluj-Napoca (2006)

  18. Horváth, Z., Song, Y., Terlaky, T.: Steplength thresholds for invariance preserving of discretization methods of dynamical systems on a polyhedron. Discrete Contin. Dyn. Syst. A 35, 2997–3013 (2015)

    Article  MathSciNet  Google Scholar 

  19. Horváth, Z., Song, Y., Terlaky, T.: Invariance conditions for nonlinear dynamical systems. In: Goldengorin, B (ed.) Optimization and Its Applications in Control and Data Science. Springer Optimization and Its Applications, vol. 115, pp 265–280. Springer, Cham (2016)

    Chapter  Google Scholar 

  20. Horváth, Z., Song, Y., Terlaky, T.: A novel unified approach to invariance conditions for a linear dynamical system. Appl. Math. Comput. 298, 351–367 (2017)

    MathSciNet  Google Scholar 

  21. Loewy, R., Schneider, H.: Positive operators on the n-dimensional ice cream cone. J. Math. Anal. Appl. 49, 375–392 (1975)

    Article  MathSciNet  Google Scholar 

  22. Luenberger, D.G.: Introduction to Dynamic Systems: Theory, Models, and Applications. Wiley, New York (1979)

    MATH  Google Scholar 

  23. Rockefellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  24. Rudin, W.: Real and Complex Analysis. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  25. Schneider, H., Vidyasagar, M.: Cross-positive matrices. SIAM J. Numer. Anal. 7, 508–519 (1970)

    Article  MathSciNet  Google Scholar 

  26. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  27. Stern, R., Wolkowicz, H.: Exponential nonnegativity on the ice cream cone. SIAM J. Matrix Anal. Appl. 12, 160–165 (1991)

    Article  MathSciNet  Google Scholar 

  28. Vandergraft, J.: Spectral properties of matrices which have invariant cones. SIAM J. Appl. Math. 16, 1208–1222 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for carefully evaluating our manuscript, and for providing constructive suggestions which notably improved this paper.

Funding

This research is supported by a start-up grant of Lehigh University and by TAMOP-4.2.2.A-11/1KONV-2012-0012: Basic research for the development of hybrid and electric vehicles. The TAMOP Project is supported by the European Union and co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Terlaky.

Additional information

Dedicated to Professor Hans Georg Bock on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horváth, Z., Song, Y. & Terlaky, T. Invariance Preserving Discretization Methods of Dynamical Systems. Vietnam J. Math. 46, 803–823 (2018). https://doi.org/10.1007/s10013-018-0305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-018-0305-z

Keywords

Mathematics Subject Classification (2010)

Navigation