Skip to main content
Log in

Predicting Homoclinic and Heteroclinic Bifurcation of Generalized Duffing-Harmonic-van de Pol Oscillator

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, a novel construction of solutions of nonlinear oscillators are proposed which can be called as the quadratic generalized harmonic function. Based on this novel solution, a modified generalized harmonic function Lindstedt–Poincaré method is presented which call the quadratic generalized harmonic function perturbation method. Via this method, the homoclinic and heteroclinic bifurcations of Duffing-harmonic-van de Pol oscillator are investigated. The critical value of the homoclinic and heteroclinic bifurcation parameters are predicted. Meanwhile, the analytical solutions of homoclinic and heteroclinic orbits of this oscillator are also attained. To illustrate the accuracy of the present method, all the above-mentioned results are compared with those of Runge–Kutta method, which shows that the proposed method is effective and feasible. In addition, the present method can be utilized in study many other oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barkham, P.G.D., Souback, A.C.: An extension to the method of Kryloff and Bogoliuboff. Int. J. Control 10, 337–392 (1969)

    Article  MathSciNet  Google Scholar 

  2. Yuste, S.B., Bejarano, J.D.: Extension and improvement to the Krylov–Bogoliubov methods using elliptic functions. Int. J. Control 49, 1127–1141 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Roy, R.V.: Averaging method for strongly non-linear oscillators with periodic excitations. Int. J. NonLinear Mech. 29, 737–753 (1994)

    Article  MATH  Google Scholar 

  4. Coppola, V.T., Rand, R.H.: Averaging using elliptic functions: approximation of limit cycles. Acta Mech. 81, 125–142 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S.H., Cheung, Y.K.: An elliptic Lindsted–Poincare method for certain strongly non-linear oscillators. Nonlinear Dyn. 12, 199–213 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S.H., Yang, X.M., Cheung, Y.K.: Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt–Poincare method. J. Sound Vib. 227, 1109–1118 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, S.H., Yang, X.M., Cheung, Y.K.: Periodic solutions of strongly quadratic non-linear oscillators by the elliptic perturbation method. J. Sound Vib. 212, 771–780 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Otty, J.P.: Study of a non-linear perturbed oscillator. Int. J. Control 32, 475–487 (1980)

    Article  Google Scholar 

  9. Beléndez, A., Pascual, C., Ortuño, M., Beléndez, T., Gallego, S.: Application of a modified He’s homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities. Nonlinear Anal. Real World Appl. 10, 601–610 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Öziş, T., Yıldırım, A.: Generating the periodic solutions for forcing van der Pol oscillators by the Iteration Perturbation method. Nonlinear Anal. Real World Appl. 10, 1984–1989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, S.-S., Chen, Co-K: Application of the differential transformation method to the free vibrations of strongly non-linear oscillators. Nonlinear Anal. Real World Appl. 10, 881–888 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mickens, R.E.: Mathematical and numerical study of the Duffing-harmonic oscillator. J. Sound Vib. 244, 563–567 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, H., Tang, J.H.: Solution of a Duffing-harmonic oscillator by the method of harmonic balance. J. Sound Vib. 294, 637–639 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tiwari, S.B., Nageswara Rao, B., Shivakumar Swamy, N., Sai, K.S., Nataraja, H.R.: Analytical study on a Duffing-harmonic oscillator. J. Sound Vib. 285, 1217–1222 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lim, C.W., Wu, B.S.: A new analytical approach to the Duffing-harmonic oscillator. Phys. Lett. A 311, 365–373 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, H.: Solutions of the Duffing-harmonic oscillator by an iteration procedure. J. Sound Vib. 298, 446–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lim, C.W., Wu, B.S., Sun, W.P.: Higher accuracy analytical approximations to the Duffing-harmonic oscillator. J. Sound Vib. 296, 1039–1045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Öziş, T., Yıldırım, A.: Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method. Comput. Math. Appl. 54, 1184–1187 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Beléndez, A., Méndez, D.I., Fernández, E., Marini, S., Pascual, I.: An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method. Phys. Lett. A 373, 2805–2809 (2009)

    Article  MATH  Google Scholar 

  20. Chen, Y.Z.: Multiple-parameters technique for higher accurate numerical solution of Duffing-harmonic oscillation. Acta Mech. 218, 217–224 (2011)

    Article  MATH  Google Scholar 

  21. Wang, H., Chung, K.: Analytical solutions of a generalized Duffing-harmonic oscillator by a nonlinear time transformation method. Phys. Lett. A 376, 1118–1124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, Z., Zhang, L.: Asymptotic method for analysis of nonlinear systems with two parameters. Acta Math. Sci. (English Edition) 6, 453–462 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Xu, Z.: Non-linear time transformation method for strongly nonlinear oscillation systems. Acta Math. Sci. (English Edition) 8, 279–288 (1992)

    MATH  Google Scholar 

  24. Xu, Z., Cheung, Y.K.: Non-linear scales method for strongly non-linear oscillators. Nonlinear Dyn. 7, 285–289 (1995)

    Article  MathSciNet  Google Scholar 

  25. Xu, Z., Chan, H.S.Y., Chung, K.W.: Separatrices and limit cycles of strongly nonlinear oscillators by the perturbation-incremental method. Nonlinear Dyn. 11, 213–233 (1996)

    Article  MathSciNet  Google Scholar 

  26. Cao, Y.Y., Chung, K.W., Xu, J.: A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method. Nonlinear Dyn. 64, 221–236 (2011)

    Article  MathSciNet  Google Scholar 

  27. Chen, S.H., Chen, Y.Y., Sze, K.Y.: A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators. J. Sound Vib. 322, 381–392 (2009)

    Article  Google Scholar 

  28. Merkin, J.H., Needham, D.J.: On infinite period bifurcations with an application to roll waves. Acta Mech. 60, 1–16 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support by the National Natural Science Foundation of China (Grant No. 11172093, 11372102) and the Hunan Provincial Innovation Foundation for Postgraduate (No. CX2012B159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Tang, J. & Cai, P. Predicting Homoclinic and Heteroclinic Bifurcation of Generalized Duffing-Harmonic-van de Pol Oscillator. Qual. Theory Dyn. Syst. 15, 19–37 (2016). https://doi.org/10.1007/s12346-015-0138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-015-0138-z

Keywords

Navigation