Skip to main content
Log in

A non-linear seales method for strongly non-linear oscillators

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A non-linear seales method is presented for the analysis of strongly non-linear oseillators of the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamXvP5wqonvsaeHbfv3ySLgzaGqbdiqb-Hha4zaadaGaey4kaSIa% am4zaiaacIcacqWF4baEcaGGPaGae8xpa0JaeqyTduMaamOzaiaacI% cacqWF4baEcqWFSaalcuWF4baEgaGaaiaabMcaaaa!4FEC!\[\ddot x + g(x) = \varepsilon f(x,\dot x{\text{)}}\], where g(x) is an arbitrary non-linear function of the displacement x. We assumed that % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamXvP5wqonvsaeHbfv3ySLgzaGqbdiab-Hha4jaacIcacqWF0baD% cqWFSaalcqaH1oqzcaGGPaGaeyypa0Jae8hEaG3aaSbaaSqaaiaaic% daaeqaaOGaaiikaiabe67a4jaacYcacqaH3oaAcaGGPaGaey4kaSYa% aabmaeaacqaH1oqzdaahaaWcbeqaaiaad6gaaaaabaGaamOBaiabg2% da9iaaigdaaeaacaWGTbGaeyOeI0IaaGymaaqdcqGHris5aOGae8hE% aG3aaSbaaSqaaiab-5gaUbqabaGccaGGOaGaeqOVdGNaaiykaiabgU% caRiaad+eacaGGOaGaeqyTdu2aaWbaaSqabeaacaWGTbaaaOGaaiyk% aaaa!67B9!\[x(t,\varepsilon ) = x_0 (\xi ,\eta ) + \sum\nolimits_{n = 1}^{m - 1} {\varepsilon ^n } x_n (\xi ) + O(\varepsilon ^m )\], where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaabsgacqaH+oaEcaGGVaGaaeizaiaadshacqGH9aqpdaaeWaqa% aiabew7aLnaaCaaaleqabaGaamOBaaaaaeaacaWGUbGaeyypa0JaaG% ymaaqaaiaad2gaa0GaeyyeIuoakiaadkfadaWgaaWcbaGaamOBaaqa% baGccaGGOaGaeqOVdGNaaiykaaaa!4FFC!\[{\text{d}}\xi /{\text{d}}t = \sum\nolimits_{n = 1}^m {\varepsilon ^n } R_n (\xi )\], % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaabsgacqaH3oaAcaGGVaGaaeizaiaadshacqGH9aqpdaaeWaqa% aiabew7aLnaaCaaaleqabaGaamOBaaaaaeaacaWGUbGaeyypa0JaaG% imaaqaaiaad2gaa0GaeyyeIuoakiaadofadaWgaaWcbaGaamOBaaqa% baGccaGGOaGaeqOVdGNaaiilaiabeE7aOjaacMcaaaa!5241!\[{\text{d}}\eta /{\text{d}}t = \sum\nolimits_{n = 0}^m {\varepsilon ^n } S_n (\xi ,\eta )\], and R n,S nare to be determined in the course of the analysis. This method is suitable for the systems with even non-linearities as well as with odd non-linearities. It can be viewed as a generalization of the two-variable expansion procedure. Using the present method we obtained a modified Krylov-Bogoliubov method. Four numerical examples are presented which served to demonstrate the effectiveness of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh, A. H., Perturbation Methods, Wiley, New York, 1973.

    Google Scholar 

  2. Mickens, R. and Oyedeji, K., ‘Construction of approximate analytical solutions to a new class of non-linear oscillator equation’, J. Sound Vib. 102, 1985, 579–582.

    Google Scholar 

  3. Barkham, P. G. D. and Soudack, A. C., ‘An extension to the method of Kryloff and Bogoliuboff’, Int. J. Control 10, 1969, 377–392.

    Google Scholar 

  4. Barkham, P. G. D. and Soudack, A. C., ‘Approximate solutions of non-linear non-autonomous second-order differential equations’, Int. J. Control 11, 1970, 101–114.

    Google Scholar 

  5. Soudack, A. C. and Barkham, P. G. D., ‘Further results on approximate solutions of non-linear, non-autonomous second-order differential equations’, Int. J. Control 12, 1970, 763–767.

    Google Scholar 

  6. Soudack, A. C. and Barkham, P. G. D., ‘On the transient solution of the unforced duffing equation with large damping’, Int. J. Control 13, 1971, 767–769.

    Google Scholar 

  7. Christopher, P. A. T., ‘An approximate solution to a strongly non-linear, second order, differential equation’, Int. J. Control 17, 1973, 597–608.

    Google Scholar 

  8. Yuste, S. B. and Bejarano, J. D., ‘Improvement of a Krylov-Bogoliubov method that uses Jacobi elliptic functions’, J. Sound Vib. 139, 1990, 151–163.

    Google Scholar 

  9. Yuste, S. B. and Bejarano, J. D., ‘Extension and improvement to the Krylov-Bogoliubov methods using elliptic functions’, Int. J. Control 49, 1989, 1127–1141.

    Google Scholar 

  10. Yuste, S. B., ‘On Duffing oscillators with slowly varying parameters’, Int. J. Non-Linear Mechanics 26, 1991, 671–677.

    Google Scholar 

  11. Margallo, J. G. and Bejarano, J. D., ‘A generalization of the method of harmonic balance’, J. Sound Vib. 116, 1987, 591–595.

    Google Scholar 

  12. Margallo, J. G. and Bejarano, J. D., ‘Generalized Fourier series and limit cycles of generalized van der Pol oscillators’, J. Sound Vib. 136, 1990, 453–466.

    Google Scholar 

  13. Margallo, J. G. and Bejarano, J. D., ‘Stability of limit cycles and bifurcations of generalized van der Pol oscillators: 299–1’, Int. J. Non-Linear Mechanics 23, 1990, 663–675.

    Google Scholar 

  14. Burton, T. D., ‘Non-linear oscillator limit cycle analysis using a time transformation approach’, Int. J. Non-Linear Mechanics 17, 1982, 7–19.

    Google Scholar 

  15. Coppola, V. T. and Rand, R. H., ‘Averaging using elloptic functions: approximation of limit cycles’, Acta Mechanica 81, 1990, 125–142.

    Google Scholar 

  16. Cap, F. F., ‘Averaging method for the solution of non-linear differential equations with periodic non-harmonic solutions’, Int. J. Non-Linear Mechanics 9, 1974, 441–450.

    Google Scholar 

  17. Denman, H. H. and Liu, Y. K., ‘Application of ultraspherical polynomials to non-linear oscillations II, free oscillations’, Q. of Appl. Math. 22, 1965, 273–292.

    Google Scholar 

  18. Sinha, S. C. and Srinivasan, P., ‘Application of ultraspherical polynomials to non-linear autonomous systems’, J. Sound Vib. 18, 1971, 55–60.

    Google Scholar 

  19. Anderson, G. L., ‘An approximate analysis of non-linear, non-conservative systems using orthogonal polynomials’, J. Sound Vib. 29, 1973, 463–474.

    Google Scholar 

  20. Kuzmak, G. E., ‘Asymptotic solutions of nonlinear second order differential equations with variable coefficients’, P.M.M. 23, 1959, 515–526.

    Google Scholar 

  21. Kevorkian, J. and Cole, J. D., Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1981.

    Google Scholar 

  22. Burton, T. D. and Hamdan, M. N., ‘Analysis of non-linear autonomous conservative oscillators by a time transformation method’, J. Sound Vib. 87, 1983, 543–554.

    Google Scholar 

  23. Xu, Z. and Zhang, L. Q., ‘Asymptotic method for analysis of non-linear systems with two parameter’, Acta Math. Scientia 6, 1986, 453–462.

    Google Scholar 

  24. Minorsky, N., Nonlinear Oscillations, Van Nostrand, New York, 1962.

    Google Scholar 

  25. Mickens, R. E., ‘Perturbation procedure for the van der Pol oscillator based on the Hopf bifurcation theorem’, J. Sound Vib. 127, 1988, 187–191.

    Google Scholar 

  26. Summers, J. L. and Savage, M. D., ‘Two timescale harmonic balance, I. Application to autonomous one-dimensional nonlinear oscillators’, Phil. Trans. R. Soc. Lond. A 340, 1992, 473–501.

    Google Scholar 

  27. Obi, C., ‘Researches on the equation (E): 299–2’, Proc. Camb. Phil. Soc. 50, 1954, 26–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Cheung, Y.K. A non-linear seales method for strongly non-linear oscillators. Nonlinear Dyn 7, 285–299 (1995). https://doi.org/10.1007/BF00046304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046304

Key words

Navigation