Skip to main content
Log in

Dual Effect of Pyruvate in Isolated Nerve Terminals: Generation of Reactive Oxygen Species and Protection of Aconitase

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Generation of reactive oxygen species (ROS) in synaptosomes was investigated in the presence of different substrates. When pyruvate was used as a substrate an increased rate of hydrogen peroxide formation was detected by the Amplex Red fluorescent assay, but aconitase, which is known to be a highly sensitive enzyme to ROS was not inhibited. In contrast, pyruvate exerted a partial protection on aconitase against a time-dependent inactivation that occurred when synaptosomes were incubated in the absence of substrates. Disruption of synaptosomal membranes with Triton X-100 prevented the protective effect of pyruvate. It is suggested that citrate and/or isocitrate formed in the metabolism of pyruvate could be responsible for a partial protection of aconitase. Therefore while pyruvate could have a prooxidant effect it could also exert a protective effect on the aconitase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Dykens (1994) ArticleTitleIsolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration J. Neurochem. 63 584–591 Occurrence Handle8035183 Occurrence Handle1:CAS:528:DyaK2cXltVGqtrw%3D

    PubMed  CAS  Google Scholar 

  2. G. Fiskum A. N. Murphy M. F. Beal (1999) ArticleTitleMitochondria in neurodegeneration: Acute ischemia and chronic neurodegenerative diseases J. Cereb. Blood Flow Metab. 19 351–369 Occurrence Handle10197505 Occurrence Handle1:CAS:528:DC%2BD3cXks1Snu70%3D

    PubMed  CAS  Google Scholar 

  3. G. Fiskum (2000) ArticleTitleMitochondrial participation in ischemic and traumatic neural cell death J. Neurotrauma 17 843–855 Occurrence Handle11063052 Occurrence Handle1:STN:280:DC%2BD3crgvFOjtg%3D%3D Occurrence Handle10.1089/neu.2000.17.843

    Article  PubMed  CAS  Google Scholar 

  4. D. G. Nicholls S. L. Budd (2000) ArticleTitleMitochondria and neuronal survival Physiol. Rev. 80 315–360 Occurrence Handle10617771 Occurrence Handle1:CAS:528:DC%2BD3cXmtl2isg%3D%3D

    PubMed  CAS  Google Scholar 

  5. A. N. Murphy G. Fiskum M. F. Beal (1999) ArticleTitleMitochondria in neurodegeneration: Bioenergetic function in cell life and death J. Cereb. Blood Flow Metab. 19 231–245 Occurrence Handle10078875 Occurrence Handle1:CAS:528:DyaK1MXisVKmtbs%3D

    PubMed  CAS  Google Scholar 

  6. P. C. Hinkle R. A. Butow E. Racker B. Chance (1967) ArticleTitlePartial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin- cytochrome beta region of the respiratory chain of beef heart submitochondrial particles J. Biol. Chem. 242 5169–5173 Occurrence Handle4294331 Occurrence Handle1:CAS:528:DyaF1cXhs1w%3D

    PubMed  CAS  Google Scholar 

  7. G. Loschen A. Azzi L. Flohe (1973) ArticleTitleMitochondrial H2O2 formation: Relationship with energy conservation FEBS Lett. 33 84–87 Occurrence Handle10.1016/0014-5793(73)80165-6 Occurrence Handle4737333 Occurrence Handle1:CAS:528:DyaE3sXkvVynsLg%3D

    Article  PubMed  CAS  Google Scholar 

  8. G. Loschen A. Azzi C. Richter L. Flohe (1974) ArticleTitleSuperoxide radicals as precursors of mitochondrial hydrogen peroxide FEBS Lett. 42 68–72 Occurrence Handle10.1016/0014-5793(74)80281-4 Occurrence Handle4859511 Occurrence Handle1:CAS:528:DyaE2cXkslemtbc%3D

    Article  PubMed  CAS  Google Scholar 

  9. Y. Liu G. Fiskum D. Schubert (2002) ArticleTitleGeneration of reactive oxygen species by the mitochondrial electron transport chain J. Neurochem. 80 780–787 Occurrence Handle11948241 Occurrence Handle1:CAS:528:DC%2BD38Xit1Gnu7Y%3D

    PubMed  CAS  Google Scholar 

  10. T. V. Votyakova I. J. Reynolds (2001) ArticleTitleΔΨ(μ)-dependent and -independent production of reactive oxygen species by rat brain mitochondria J. Neurochem. 79 266–277 Occurrence Handle10.1046/j.1471-4159.2001.00548.x Occurrence Handle11677254 Occurrence Handle1:CAS:528:DC%2BD3MXnvFSmsrs%3D

    Article  PubMed  CAS  Google Scholar 

  11. I. Sipos L. Tretter V. Adam-Vizi (2003) ArticleTitleQuantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals J. Neurochem. 84 112–118 Occurrence Handle10.1046/j.1471-4159.2003.01513.x Occurrence Handle12485407 Occurrence Handle1:CAS:528:DC%2BD3sXhtF2iug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  12. Q. Chen E. J. Vazquez S. Moghaddas C. L. Hoppel E. J. Lesnefsky (2003) ArticleTitleProduction of reactive oxygen species by mitochondria: Central role of complex III J. Biol. Chem. 278 36027–36031 Occurrence Handle12840017 Occurrence Handle1:CAS:528:DC%2BD3sXnt1aqtbY%3D

    PubMed  CAS  Google Scholar 

  13. L. Tretter V. Adam-Vizi (2004) ArticleTitleGeneration of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase J. Neurosci. 24 7771–7778 Occurrence Handle10.1523/JNEUROSCI.1842-04.2004 Occurrence Handle15356188 Occurrence Handle1:CAS:528:DC%2BD2cXnvVWntLo%3D

    Article  PubMed  CAS  Google Scholar 

  14. A. A. Starkov G. Fiskum C. Chinopoulos B. J. Lorenzo S. E. Browne M. S. Patel M. F. Beal (2004) ArticleTitleMitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species J. Neurosci. 24 7779–7788 Occurrence Handle10.1523/JNEUROSCI.1899-04.2004 Occurrence Handle15356189 Occurrence Handle1:CAS:528:DC%2BD2cXnvVWntLs%3D

    Article  PubMed  CAS  Google Scholar 

  15. Y. Izumi A. M. Benz H. Katsuki C. F. Zorumski (1997) ArticleTitleEndogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation J. Neurosci. 17 9448–9457 Occurrence Handle9391000 Occurrence Handle1:CAS:528:DyaK2sXotVWgs7g%3D

    PubMed  CAS  Google Scholar 

  16. A. Schousboe N. Westergaard H. S. Waagepetersen O. M. Larsson I. J. Bakken U. Sonnewald (1997) ArticleTitleTrafficking between glia and neurons of TCA cycle intermediates and related metabolites Glia 21 99–105 Occurrence Handle10.1002/(SICI)1098-1136(199709)21:1<99::AID-GLIA11>3.0.CO;2-W Occurrence Handle9298852 Occurrence Handle1:STN:280:ByiH2c3jtVc%3D

    Article  PubMed  CAS  Google Scholar 

  17. S. Broer B. Rahman G. Pellegri L. Pellerin J. L. Martin S. Verleysdonk B. Hamprecht P. J. Magistretti (1997) ArticleTitleComparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons J. Biol. Chem. 272 30096–30102 Occurrence Handle10.1074/jbc.272.48.30096 Occurrence Handle9374487 Occurrence Handle1:CAS:528:DyaK2sXnslGhtLo%3D

    Article  PubMed  CAS  Google Scholar 

  18. R. Dringen H. Wiesinger B. Hamprecht (1993) ArticleTitleUptake of l-lactate by cultured rat brain neurons Neurosci. Lett. 163 5–7 Occurrence Handle10.1016/0304-3940(93)90215-7 Occurrence Handle8295731 Occurrence Handle1:CAS:528:DyaK2cXivVSnsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  19. Y. H. Kang S. J. Chung I. J. Kang J. H. Park R. Bunger (2001) ArticleTitleIntramitochondrial pyruvate attenuates hydrogen peroxide-induced apoptosis in bovine pulmonary artery endothelium Mol. Cell Biochem. 216 37–46 Occurrence Handle10.1023/A:1011040026620 Occurrence Handle11216862 Occurrence Handle1:CAS:528:DC%2BD3MXnslGit7w%3D

    Article  PubMed  CAS  Google Scholar 

  20. Y. J. Lee I. J. Kang R. Bunger Y. H. Kang (2003) ArticleTitleMechanisms of pyruvate inhibition of oxidant-induced apoptosis in human endothelial cells Microvasc. Res. 66 91–101 Occurrence Handle12935767 Occurrence Handle1:CAS:528:DC%2BD3sXmsVGrtL0%3D

    PubMed  CAS  Google Scholar 

  21. M. H. Yoo J. Y. Lee S. E. Lee J. Y. Koh Y. H. Yoon (2004) ArticleTitleProtection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo Invest. Ophthalmol. Vis. Sci. 45 1523–1530 Occurrence Handle10.1167/iovs.03-1315 Occurrence Handle15111611

    Article  PubMed  Google Scholar 

  22. L. Cavallini M. Valente M. P. Rigobello (1990) ArticleTitleThe protective action of pyruvate on recovery of ischemic rat heart: Comparison with other oxidizable substrates J. Mol. Cell Cardiol. 22 143–154 Occurrence Handle10.1016/0022-2828(90)91111-J Occurrence Handle2182887 Occurrence Handle1:CAS:528:DyaK3cXktFOlt7c%3D

    Article  PubMed  CAS  Google Scholar 

  23. G. Alvarez M. Ramos F. Ruiz J. Satrustegui E. Bogonez (2003) ArticleTitlePyruvate protection against beta-amyloid-induced neuronal death: Role of mitochondrial redox state J. Neurosci. Res. 73 260–269 Occurrence Handle10.1002/jnr.10648 Occurrence Handle12836169 Occurrence Handle1:CAS:528:DC%2BD3sXlsFahs78%3D

    Article  PubMed  CAS  Google Scholar 

  24. S. Desagher J. Glowinski J. Premont (1997) ArticleTitlePyruvate protects neurons against hydrogen peroxide-induced toxicity J. Neurosci. 17 9060–9067 Occurrence Handle9364052 Occurrence Handle1:CAS:528:DyaK2sXnsFWks7s%3D

    PubMed  CAS  Google Scholar 

  25. L. P. Liang Y. S. Ho M. Patel (2000) ArticleTitleMitochondrial superoxide production in kainate-induced hippocampal damage Neuroscience 101 563–570 Occurrence Handle10.1016/S0306-4522(00)00397-3 Occurrence Handle11113305 Occurrence Handle1:CAS:528:DC%2BD3cXosFemtrw%3D

    Article  PubMed  CAS  Google Scholar 

  26. M. Patel B. J. Day J. D. Crapo I. Fridovich J. O. McNamara (1996) ArticleTitleRequirement for superoxide in excitotoxic cell death Neuron 16 345–355 Occurrence Handle10.1016/S0896-6273(00)80052-5 Occurrence Handle8789949 Occurrence Handle1:CAS:528:DyaK28XhtlGhsLc%3D

    Article  PubMed  CAS  Google Scholar 

  27. L. Tretter V. Adam-Vizi (2000) ArticleTitleInhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of α-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress J. Neurosci. 20 8972–8979 Occurrence Handle11124972 Occurrence Handle1:CAS:528:DC%2BD3MXis1Sktw%3D%3D

    PubMed  CAS  Google Scholar 

  28. C. Chinopoulos L. Tretter V. Adam-Vizi (1999) ArticleTitleDepolarization of in situ mitochondria due to hydrogen peroxide-induced oxidative stress in nerve terminals: Inhibition of α-ketoglutarate dehydrogenase J. Neurochem. 73 220–228 Occurrence Handle10.1046/j.1471-4159.1999.0730220.x Occurrence Handle10386974 Occurrence Handle1:CAS:528:DyaK1MXktVelt74%3D

    Article  PubMed  CAS  Google Scholar 

  29. V. Adam-Vizi E. Ligeti (1986) ArticleTitleCalcium uptake of rat brain synaptosomes as a function of membrane potential under different depolarizing conditions J. Physiol. 372 363–377 Occurrence Handle3723411 Occurrence Handle1:STN:280:DyaL283ltl2jsQ%3D%3D

    PubMed  CAS  Google Scholar 

  30. A. Hausladen I. Fridovich (1996) ArticleTitleMeasuring nitric oxide and superoxide: Rate constants for aconitase reactivity Methods Enzymol. 269 37–41 Occurrence Handle8791635 Occurrence Handle1:CAS:528:DyaK28XmvF2qs70%3D

    PubMed  CAS  Google Scholar 

  31. J. G. Mohanty J. S. Jaffe E. S. Schulman D. G. Raible (1997) ArticleTitleA highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative J. Immunol. Methods 202 133–141 Occurrence Handle10.1016/S0022-1759(96)00244-X Occurrence Handle9107302 Occurrence Handle1:CAS:528:DyaK2sXhslOrs78%3D

    Article  PubMed  CAS  Google Scholar 

  32. R. A. Kauppinen D. G. Nicholls (1986) ArticleTitlePyruvate utilization by synaptosomes is independent of calcium FEBS Lett. 199 222–226 Occurrence Handle10.1016/0014-5793(86)80484-7 Occurrence Handle3084295 Occurrence Handle1:CAS:528:DyaL28XitVanurg%3D

    Article  PubMed  CAS  Google Scholar 

  33. R. P. Shank G. L. Campbell (1984) ArticleTitleAlpha-ketoglutarate and malate uptake and metabolism by synaptosomes: Further evidence for an astrocyte-to-neuron metabolic shuttle J. Neurochem. 42 1153–1161 Occurrence Handle6699641 Occurrence Handle1:CAS:528:DyaL2cXhvVOnsbY%3D

    PubMed  CAS  Google Scholar 

  34. J. Willoughby F. E. Craig S. A. Harvey J. B. Clark (1989) ArticleTitle2-Oxoglutarate: Oxidation and role as a potential precursor of cytosolic acetyl-CoA for the synthesis of acetylcholine in rat brain synaptosomes J. Neurochem. 52 896–901 Occurrence Handle2493071 Occurrence Handle1:CAS:528:DyaL1MXht12isLk%3D

    PubMed  CAS  Google Scholar 

  35. S. Melov P. Coskun M. Patel R. Tuinstra B. Cottrell A. S. Jun T. H. Zastawny M. Dizdaroglu S. I. Goodman T. T. Huang H. Miziorko C. J. Epstein D. C. Wallace (1999) ArticleTitleMitochondrial disease in superoxide dismutase 2 mutant mice Proc. Natl. Acad. Sci. USA 96 846–851 Occurrence Handle10.1073/pnas.96.3.846 Occurrence Handle9927656 Occurrence Handle1:CAS:528:DyaK1MXpvFWrug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  36. I. Sipos L. Tretter V. Adam-Vizi (2003) ArticleTitleThe production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential Neurochem. Res. 28 1575–1581 Occurrence Handle10.1023/A:1025634728227 Occurrence Handle14570403 Occurrence Handle1:CAS:528:DC%2BD3sXntFSltrc%3D

    Article  PubMed  CAS  Google Scholar 

  37. P. J. Kennelly M. A. Starovasnik A. M. Edelman E. G. Krebs (1990) ArticleTitleModulation of the stability of rabbit skeletal muscle myosin light chain kinase through the calmodulin-binding domain J. Biol. Chem. 265 1742–1749 Occurrence Handle2295654 Occurrence Handle1:CAS:528:DyaK3cXhtFCrs7Y%3D

    PubMed  CAS  Google Scholar 

  38. C. N. Pace T. McGrath (1980) ArticleTitleSubstrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation J. Biol. Chem. 255 3862–3865 Occurrence Handle7372654 Occurrence Handle1:CAS:528:DyaL3cXktVaqt7o%3D

    PubMed  CAS  Google Scholar 

  39. A. L. Lehninger (1975) The Tricarboxylic Acid Cycle Worth Publishers Inc. New York 443–476

    Google Scholar 

  40. Y. Ashani G. N. Catravas (1980) ArticleTitleHighly reactive impurities in Triton X-100 and Brij 35: Partial characterization and removal Anal. Biochem. 109 55–62 Occurrence Handle10.1016/0003-2697(80)90009-3 Occurrence Handle7469018 Occurrence Handle1:CAS:528:DyaL3MXis12qtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  41. H. W. Chang E. Bock (1980) ArticleTitlePitfalls in the use of commercial nonionic detergents for the solubilization of integral membrane proteins: Sulfhydryl oxidizing contaminants and their elimination Anal. Biochem. 104 112–117 Occurrence Handle10.1016/0003-2697(80)90283-3 Occurrence Handle7386873 Occurrence Handle1:CAS:528:DyaL3cXhvFeqtbg%3D

    Article  PubMed  CAS  Google Scholar 

  42. A. L. Bulteau K. C. Lundberg M. Ikeda-Saito G. Isaya L. I. Szweda (2005) ArticleTitleReversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion Proc. Natl. Acad. Sci. USA 102 5987–5991 Occurrence Handle10.1073/pnas.0501519102 Occurrence Handle15840721 Occurrence Handle1:CAS:528:DC%2BD2MXkt1Cmurc%3D

    Article  PubMed  CAS  Google Scholar 

  43. F. Verniquet J. Gaillard M. Neuburger R. Douce (1991) ArticleTitleRapid inactivation of plant aconitase by hydrogen peroxide Biochem. J. 276 IssueIDPt 3 643–648 Occurrence Handle1648348 Occurrence Handle1:CAS:528:DyaK3MXksVCqur0%3D

    PubMed  CAS  Google Scholar 

  44. P. Y. Cheung H. Danial J. Jong R. Schulz (1998) ArticleTitleThiols protect the inhibition of myocardial aconitase by peroxynitrite Arch. Biochem. Biophys. 350 104–108 Occurrence Handle10.1006/abbi.1997.0496 Occurrence Handle9466826 Occurrence Handle1:CAS:528:DyaK1cXnvFensA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  45. L. Oliveira C. Bouton J. C. Drapier (1999) ArticleTitleThioredoxin activation of iron regulatory proteins. Redox regulation of RNA binding after exposure to nitric oxide J. Biol. Chem. 274 516–521 Occurrence Handle10.1074/jbc.274.1.516 Occurrence Handle9867873 Occurrence Handle1:CAS:528:DyaK1MXjvVajtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  46. R. Vogel H. Wiesinger B. Hamprecht R. Dringen (1999) ArticleTitleThe regeneration of reduced glutathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required Neurosci. Lett. 275 97–100 Occurrence Handle10.1016/S0304-3940(99)00748-X Occurrence Handle10568508 Occurrence Handle1:CAS:528:DyaK1MXmvFWntbw%3D

    Article  PubMed  CAS  Google Scholar 

  47. H. Hasuo T. Akasu (2003) ArticleTitleMonocarboxylate transporters contribute to the adaptation of neuronal activity to repeated glucose deprivation in the rat lateral septal nucleus Synapse 49 97–105 Occurrence Handle10.1002/syn.10214 Occurrence Handle12740865 Occurrence Handle1:CAS:528:DC%2BD3sXkvF2qsL4%3D

    Article  PubMed  CAS  Google Scholar 

  48. S. W. Suh K. Aoyama Y. Matsumori J. Liu R. A. Swanson (2005) ArticleTitlePyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment Diabetes 54 1452–1458 Occurrence Handle15855333 Occurrence Handle1:CAS:528:DC%2BD2MXktVCksLc%3D

    PubMed  CAS  Google Scholar 

  49. N. Nakamichi Y. Kambe H. Oikawa M. Ogura K. Takano K. Tamaki M. Inoue E. Hinoi Y. Yoneda (2005) ArticleTitleProtection by exogenous pyruvate through a mechanism related to monocarboxylate transporters against cell death induced by hydrogen peroxide in cultured rat cortical neurons J. Neurochem. 93 84–93 Occurrence Handle10.1111/j.1471-4159.2005.02999.x Occurrence Handle15773908 Occurrence Handle1:CAS:528:DC%2BD2MXjtFCgt70%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Adam-Vizi.

Additional information

Special issue dedicated to Dr. Bernd Hamprecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tretter, L., Liktor, B. & Adam-Vizi, V. Dual Effect of Pyruvate in Isolated Nerve Terminals: Generation of Reactive Oxygen Species and Protection of Aconitase. Neurochem Res 30, 1331–1338 (2005). https://doi.org/10.1007/s11064-005-8805-0

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-005-8805-0

Keywords

Navigation