Skip to main content
Log in

Consensus Paper: Current Views on the Role of Cerebellar Interpositus Nucleus in Movement Control and Emotion

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In the present paper, we examine the role of the cerebellar interpositus nucleus (IN) in motor and non-motor domains. Recent findings are considered, and we share the following conclusions: IN as part of the olivo-cortico-nuclear microcircuit is involved in providing powerful timing signals important in coordinating limb movements; IN could participate in the timing and performance of ongoing conditioned responses rather than the generation and/or initiation of such responses; IN is involved in the control of reflexive and voluntary movements in a task- and effector system-dependent fashion, including hand movements and associated upper limb adjustments, for quick effective actions; IN develops internal models for dynamic interactions of the motor system with the external environment for anticipatory control of movement; and IN plays a significant role in the modulation of autonomic and emotional functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Larsell O, Jansen J. The comparative anatomy and histology of the cerebellum. III. The human cerebellum, cerebellar connections, and cerebellar cortex. Minneapolis: University of Minnesota Press; 1972.

    Google Scholar 

  2. Gould BB, Rakic P. The total number, time or origin and kinetics of proliferation of neurons comprising the deep cerebellar nuclei in the rhesus monkey. Exp Brain Res. 1981;44:195–206.

    Article  PubMed  CAS  Google Scholar 

  3. Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54(4):957–1006.

    PubMed  CAS  Google Scholar 

  4. Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. NeuroImage. 2011;54:1786–94.

    Article  PubMed  CAS  Google Scholar 

  5. Andersen BB, Fabricius K, Gundersen HJ, Jelsing J, Stark AK. No change in neuron numbers in the dentate nucleus of patients with schizophrenia estimated with a new stereological method—the smooth fractionator. J Anat. 2004;205:313–21.

    Article  PubMed  CAS  Google Scholar 

  6. Ito M, Yoshida M. The origin of cerebral-induced inhibition of Deiters neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potentials. Exp Brain Res. 1966;2(4):330–49.

    PubMed  CAS  Google Scholar 

  7. Grant G. Spinal course and somatotopically localized termination of the spinocerebellar tracts. An experimental study in the cat. Acta Physiol Scand. 1962;56(193):1–45.

    CAS  Google Scholar 

  8. Cooke JD, Larson B, Oscarsson O, Sjölund B. Origin and termination of cuneocerebellar tract. Exp Brain Res. 1971;13:339–58.

    PubMed  CAS  Google Scholar 

  9. Gonzalo-Ruiz A, Leichnetz GR. Connections of the caudal cerebellar interpositus complex in a new world monkey (Cebus apella). Brain Res Bull. 1990;25:919–27.

    Article  PubMed  CAS  Google Scholar 

  10. Lan CT, Wen CY, Shieh JY. Anatomical studies on the cuneocerebellar neurons in the gerbil by using HRP method. Ann Anat. 1994;176:409–18.

    Article  PubMed  CAS  Google Scholar 

  11. Clendenin M, Ekerot CF, Oscarsson O, Rosén I. Functional organization of two spinocerebellar paths relayed through the lateral reticular nucleus in the cat. Brain Res. 1974;69:140–3.

    Article  PubMed  CAS  Google Scholar 

  12. Ekerot CF, Larson B. The dorsal spino-olivo-cerebellar system in the cat. II. Somatotopical organization. Exp Brain Res. 1979;36:219–32.

    Article  PubMed  CAS  Google Scholar 

  13. Strominger NL, Nelson LR, Strominger RN. Banding of rubro-olivary terminations in the principal inferior olivary nucleus of the chimpanzee. Brain Res. 1985;343:185–7.

    Article  PubMed  CAS  Google Scholar 

  14. Sousa-Pinto A, Brodal A. Demonstration of a somatotopical pattern in the cortico-olivary projection in the cat. An experimental-anatomical study. Exp Brain Res. 1969;8:364–86.

    Article  PubMed  CAS  Google Scholar 

  15. Andersson G, Garwicz M, Hesslow G. Evidence for a GABAmediated cerebellar inhibition of the inferior olive in the cat. Exp Brain Res. 1988;72:450–6.

    Article  PubMed  CAS  Google Scholar 

  16. Onodera S, Hicks TP. A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. PLoS One. 2009;4:e6623.

    Article  PubMed  CAS  Google Scholar 

  17. Jang SH, Chang PH, Kwon HG. The neural connectivity of the inferior olivary nucleus in the human brain: a diffusion tensor tractography study. Neurosci Lett. 2012;523:67–70.

    Article  PubMed  CAS  Google Scholar 

  18. Ruigrok TJ, Voogd J. Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J Comp Neurol. 2000;426:209–28.

    Article  PubMed  CAS  Google Scholar 

  19. Horn KM, Pong M, Gibson AR. Functional relations of cerebellar modules of the cat. J Neurosci. 2010;30:9411–23.

    Article  PubMed  CAS  Google Scholar 

  20. Boesten AJP, Voogd J. Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. J Comp Neurol. 1975;161:215–38.

    Article  PubMed  CAS  Google Scholar 

  21. Berkley KJ, Worden IG. Projections to the inferior olive of the cat. I. Comparisons of input from the dorsal column nuclei, the lateral cervical nucleus, the spino-olivary pathways, the cereberal cortex and the cerebellum. J Comp Neurol. 1978;180:237–52.

    Article  PubMed  CAS  Google Scholar 

  22. Ekerot CF, Larson B, Oscarsson O. Information carried by the spinocerebellar paths. In: Granit R, Pompeiano O, editors. Progress in brain research. Reflex control of posture and movement, vol. 50. Amsterdam: Elsevier; 1979. p. 79–90.

    Chapter  Google Scholar 

  23. Molinari HH. Ascending somatosensory projections to the dorsal accessory olive: an anatomical study in cats. J Comp Neurol. 1984;223:110–23.

    Article  PubMed  CAS  Google Scholar 

  24. Porter CM, van Kan PLE, Horn KM, Bloedel JR, Gibson AR. Functional divisions of cat rMAO. Soc Neurosci Abstr. 1993;19:499.10.

    Google Scholar 

  25. Onodera S, Hicks TP. Patterns of transmitter labelling and connectivity of the cat's nucleus of Darkschewitsch: a wheat germ agglutinin-horseradish peroxidase and immunocytochemical study at light and electron microscopical levels. J Comp Neurol. 1995;361:553–73.

    Article  PubMed  CAS  Google Scholar 

  26. Cicirata F, Serapide MF, Parenti R, Pantò MR, Zappalà A, Nicotra A, et al. The basilar Pontine nuclei and the nucleus reticularis tegmenti pontis subserve distinct cerebrocerebellar pathways. Prog Brain Res. 2005;148:259–82.

    Article  PubMed  Google Scholar 

  27. Brodal A, Drablos PA. Two types of mossy fiber terminals in the cerebellum and their regional distribution. J Comp Neurol. 1963;121:173–87.

    Article  PubMed  CAS  Google Scholar 

  28. Szentagothai J, Rajkovits K. The origin of the climbing fibres of the cerebellum. Anat Entw Gesch. 1959;121:130–41.

    Article  Google Scholar 

  29. McCrea RA, Bishop GA, Kitai ST. Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. II. Mossy fiber system. Brain Res. 1977;122:215–28.

    Article  PubMed  CAS  Google Scholar 

  30. Dietrichs E, Bjaalie JG, Brodal P. Do pontocerebellar fibers send collaterals to the cerebellar nuclei? Brain Res. 1983;259:127–31.

    Article  PubMed  CAS  Google Scholar 

  31. McCrea RA, Bishop GA, Kitai ST. Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J Comp Neurol. 1978;181:397–419.

    Article  PubMed  CAS  Google Scholar 

  32. Robinson FR, Houk JC, Gibson AR. Limb specific connections of the cat magnocellular red nucleus. J Comp Neurol. 1987;257:553–77. Erratum in: J Comp Neurol. 1987;259:622.

    Article  PubMed  CAS  Google Scholar 

  33. May PJ. The mammalian superior colliculus: laminar structure and connections. Prog Brain Res. 2006;151:321–78.

    Article  PubMed  Google Scholar 

  34. Miller RA, Strominger NL. An experimental study of the efferent connections of the superior cerebellar peduncle in the rhesus monkey. Brain Res. 1977;133:237–50.

    Article  PubMed  CAS  Google Scholar 

  35. Zhu JN, Yung WH, Kwok-Chong CB, Chan YS, Wang JJ. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev. 2006;52:93–106.

    Article  PubMed  Google Scholar 

  36. Voogd J, Bigaré. Topographical distribution of olivary and corticonuclear fibres in the cerebellum: a review. In: de Montigny C, Courville J, editors. The olivary nucleus. Anatomy and physiology. New York: Raven; 1980. p. 207–34.

    Google Scholar 

  37. Buisseret-Delmas C, Angaut P. The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol. 1993;40:63–87.

    Article  PubMed  CAS  Google Scholar 

  38. Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.

    Article  PubMed  CAS  Google Scholar 

  39. Ruigrok TJ. Cerebellar nuclei: the olivary connection. Prog Brain Res. 1997;114:167–92.

    Article  PubMed  CAS  Google Scholar 

  40. Trott JR, Apps R, Armstrong DM. Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. 1. The C1 zone. Exp Brain Res. 1998;118:298–315.

    Article  PubMed  CAS  Google Scholar 

  41. Voogd J, Pardoe J, Ruigrok TJ, Apps R. The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci. 2003;23:4645–56.

    PubMed  CAS  Google Scholar 

  42. Pijpers A, Apps R, Pardoe J, Voogd J, Ruigrok TJ. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci. 2006;26:12067–80.

    Article  PubMed  CAS  Google Scholar 

  43. Ekerot CF, Garwicz M, Schouenborg J. Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. J Physiol. 1991;441:257–74.

    PubMed  CAS  Google Scholar 

  44. Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10:670–81.

    Article  PubMed  CAS  Google Scholar 

  45. Garwicz M, Apps R, Trott JR. Micro-organization of olivocerebellar and corticonuclear connections of the paravermal cerebellum in the cat. Eur J Neurosci. 1996;8:2726–38.

    Article  PubMed  CAS  Google Scholar 

  46. Apps R, Garwicz M. Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum. Eur J Neurosci. 2000;12:205–14.

    Article  PubMed  CAS  Google Scholar 

  47. Sugihara I. Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. Cerebellum. 2011;10:449–63.

    Article  PubMed  CAS  Google Scholar 

  48. Garwicz M, Ekerot CF. Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. J Physiol. 1994;474:245–60.

    PubMed  CAS  Google Scholar 

  49. van Kan PL, Houk JC, Gibson AR. Output organization of intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:57–73.

    PubMed  Google Scholar 

  50. Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res. 2000;124:141–72.

    Article  PubMed  CAS  Google Scholar 

  51. Ekerot CF, Jorntell H, Garwicz M. Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat. Exp Brain Res. 1995;106:365–76.

    Article  PubMed  CAS  Google Scholar 

  52. Giuffrida R, Li Volsi G, Panto MR, Periciavalle V, Sapienza S, Urbano A. Single muscle organization of interposito-rubral projections. Exp Brain Res. 1980;39:261–7.

    Article  PubMed  CAS  Google Scholar 

  53. Palkovits M, Mezey E, Hamori J, Szentagothai J. Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Exp Brain Res. 1977;28:189–209.

    PubMed  CAS  Google Scholar 

  54. De Zeeuw CI, Berrebi AS. Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci. 1995;7:2322–33.

    Article  PubMed  Google Scholar 

  55. Bell CC, Kawasaki T. Relations among climbing fiber responses of nearby Purkinje cells. J Neurophysiol. 1972;35:155–69.

    PubMed  CAS  Google Scholar 

  56. Sasaki K, Bower JM, Llinas R. Multiple Purkinje cell recording in rodent cerebellar cortex. Eur J Neurosci. 1989;1:572–86.

    Article  PubMed  Google Scholar 

  57. Wise AK, Cerminara NL, Marple-Horvat DE, Apps R. Mechanisms of synchronous activity in cerebellar Purkinje cells. J Physiol. 2010;588:2373–90.

    Article  PubMed  CAS  Google Scholar 

  58. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2011;481:502–5.

    Article  PubMed  CAS  Google Scholar 

  59. Bengtsson F, Ekerot CF, Jörntell H. In vivo analysis of inhibitory synaptic inputs and rebounds in deep cerebellar nuclear neurons. PLoS One. 2011;6:e18822.

    Article  PubMed  CAS  Google Scholar 

  60. Ito M, Yoshida M, Obata K. Monosynaptic inhibition of the intracerebellar nuclei induced from the cerebellar cortex. Experientia. 1964;20:575–6.

    Article  PubMed  CAS  Google Scholar 

  61. Armstrong DM, Edgley SA. Discharges of nucleus interpositus neurones during locomotion in the cat. J Physiol. 1984;351:411–32.

    PubMed  CAS  Google Scholar 

  62. Van Der Want JJL, Wiklund L, Guegan M, Ruigrok T, Voogd J. Anterograde tracing of the rat olivocerebellar system with phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol. 1989;288:1–18.

    Article  PubMed  Google Scholar 

  63. Shinoda Y, Izawa Y, Sugiuchi Y, Futami T. Functional significance of excitatory projections from the precerebellar nuclei to interpositus and dentate nucleus neurons for mediating motor, premotor and parietal cortical inputs. Prog Brain Res. 1997;114:193–207.

    Article  PubMed  CAS  Google Scholar 

  64. Simpson JI, Wylie DR, De Zeeuw CI. On climbing fiber signals and their consequence(s). Behav Brain Sci. 1996;19:384–98.

    Article  Google Scholar 

  65. Bloedel JR, Bracha V. Current concepts of climbing fiber function. Anat Rec. 1998;253:118–26.

    Article  PubMed  CAS  Google Scholar 

  66. De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998;21:391–400.

    Article  PubMed  Google Scholar 

  67. Yeo CH, Hesslow G. Cerebellum and conditioned reflexes. Trends Cogn Sci. 1998;2:322–30.

    Article  PubMed  CAS  Google Scholar 

  68. Llinás RR. Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story. J Physiol. 2011;589:3423–32.

    Article  PubMed  CAS  Google Scholar 

  69. Colin F, Manil J, Desclin JC. The olivocerebellar system. I. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers. Brain Res. 1980;187:3–27.

    Article  PubMed  CAS  Google Scholar 

  70. Cerminara NL, Rawson JA. Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. J Neurosci. 2004;24:4510–7.

    Article  PubMed  CAS  Google Scholar 

  71. Rawson JA, Tilokskulchai K. Suppression of simple spike discharges of cerebellar Purkinje cells by impulses in climbing fibre afferents. Neurosci Lett. 1981;25:125–30.

    Article  PubMed  CAS  Google Scholar 

  72. Fukuda M, Yamamoto T, Llinas R. The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental study. Eur J Neurosci. 2001;13:315–26.

    Article  PubMed  CAS  Google Scholar 

  73. Blenkinsop TA, Lang EJ. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity. J Neurosci. 2011;31:14708–20.

    Article  PubMed  CAS  Google Scholar 

  74. Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI. Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci. 2010;107:8410–5.

    Article  PubMed  CAS  Google Scholar 

  75. Alvina K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K. Questioning the role of rebound firing in the cerebellum. Nature Neurosci. 2008;11:1256–8.

    Article  PubMed  CAS  Google Scholar 

  76. Cody FW, Moore RB, Richardson HC. Patterns of activity evoked in cerebellar interpositus nuclear neurones by natural somatosensory stimuli in awake cats. J Physiol. 1981;317:1–20.

    PubMed  CAS  Google Scholar 

  77. Armstrong DM, Rawson JA. Responses of neurones in nucleus interpositus of the cerebellum to cutaneous nerve volleys in the awake cat. J Physiol. 1979;289:403–23.

    PubMed  CAS  Google Scholar 

  78. Gellman R, Gibson AR, Houk JC. Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol. 1985;54:40–60.

    PubMed  CAS  Google Scholar 

  79. Apps R. Movement-related gating of climbing fibre input to cerebellar cortical zones. Prog Neurobiol. 1999;57:537–62.

    Article  PubMed  CAS  Google Scholar 

  80. Apps R, Hartell NA, Armstrong DM. Step phase-related excitability changes in spino-olivocerebellar paths to the c1 and c3 zones in cat cerebellum. J Physiol. 1995;483:687–702.

    PubMed  CAS  Google Scholar 

  81. Monzée J, Smith AM. Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip. J Neurophysiol. 2004;91:1230–9.

    Article  PubMed  Google Scholar 

  82. Chen S, Hillman DE. Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol. 1993;22:81–91.

    Article  PubMed  CAS  Google Scholar 

  83. Tarnecki R. Functional connections between neurons of interpositus nucleus of the cerebellum and the red nucleus. Behav Brain Res. 1988;28:117–25.

    Article  PubMed  CAS  Google Scholar 

  84. Teune TM, van der Burg J, Ruigrok TJ. Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study. Brain Res. 1995;673:313–9.

    Article  PubMed  CAS  Google Scholar 

  85. Jiang MC, Alheid GF, Nunzi MG, Houk JC. Cerebellar input to magnocellular neurons in the red nucleus of the mouse: synaptic analysis in horizontal brain slices incorporating cerebello-rubral pathways. Neuroscience. 2002;110:105–21.

    Article  PubMed  CAS  Google Scholar 

  86. Bloedel JR, Bracha V. On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behav Brain Res. 1995;68:1–44.

    Article  PubMed  CAS  Google Scholar 

  87. Rispal-Padel L, Cicirata F, Pons C. Cerebellar nuclear topography of simple and synergistic movements in the alert baboon (Papio papio). Exp Brain Res. 1982;47:365–80.

    Article  PubMed  CAS  Google Scholar 

  88. Asanuma C, Thach WR, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res. 1983;286:267–97.

    PubMed  CAS  Google Scholar 

  89. Schwartz AB, Ebner TJ, Bloedel JR. Responses of interposed and dentate neurons to perturbations of the locomotor cycle. Exp Brain Res. 1987;67:323–38.

    Article  PubMed  CAS  Google Scholar 

  90. Berthier NE, Moore JW. Activity of deep cerebellar nuclear cells during classical conditioning of nictitating membrane extension in rabbits. Exp Brain Res. 1990;83:44–54.

    Article  PubMed  CAS  Google Scholar 

  91. van Kan PL, Horn KM, Gibson AR. The importance of hand use to discharge of interpositus neurones of the monkey. J Physiol. 1994;480:171–90.

    PubMed  Google Scholar 

  92. Gibson AR, Horn KM, Stein JF, Van Kan PL. Activity of interpositus neurons during a visually guided reach. Can J Physiol Pharmacol. 1996;74:499–512.

    Article  PubMed  CAS  Google Scholar 

  93. Zhang H, Gamlin PD. Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady-state characteristics. J Neurophysiol. 1998;79:1255–69.

    PubMed  CAS  Google Scholar 

  94. Chen FP, Evinger C. Cerebellar modulation of trigeminal reflex blinks: interpositus neurons. J Neurosci. 2006;26:10569–76.

    Article  PubMed  CAS  Google Scholar 

  95. Sánchez-Campusano R, Gruart A, Delgado-García JM. The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J Neurosci. 2007;27:6620–32.

    Article  PubMed  CAS  Google Scholar 

  96. Krupa DJ, Thompson JK, Thompson RF. Localization of a memory trace in the mammalian brain. Science. 1993;260:989–91.

    Article  PubMed  CAS  Google Scholar 

  97. Bracha V, Webster ML, Winters NK, Irwin KB, Bloedel JR. Effects of muscimol inactivation of the cerebellar interposed-dentate nuclear complex on the performance of the nictitating membrane response in the rabbit. Exp Brain Res. 1994;100:453–68.

    Article  PubMed  CAS  Google Scholar 

  98. Kolb FP, Irwin KB, Bloedel JR, Bracha V. Conditioned and unconditioned forelimb reflex systems in the cat: involvement of the intermediate cerebellum. Exp Brain Res. 1997;114:255–70.

    Article  PubMed  CAS  Google Scholar 

  99. Kreider JC, Mauk MD. Eyelid conditioning to a target amplitude: adding how much to whether and when. J Neurosci. 2010;30:14145–52.

    Article  PubMed  CAS  Google Scholar 

  100. Bracha V, Zhao L, Irwin K, Bloedel JR. Intermediate cerebellum and conditioned eyeblinks. Parallel involvement in eyeblinks and tonic eyelid closure. Exp Brain Res. 2001;136:41–9.

    Article  PubMed  CAS  Google Scholar 

  101. Milak MS, Shimansky Y, Bracha V, Bloedel JR. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol. 1997;78:939–59.

    PubMed  CAS  Google Scholar 

  102. Bracha V, Kolb FP, Irwin KB, Bloedel JR. Inactivation of interposed nuclei in the cat: classically conditioned withdrawal reflexes, voluntary limb movements and the action primitive hypothesis. Exp Brain Res. 1999;126:77–92.

    Article  PubMed  CAS  Google Scholar 

  103. Martin JH, Cooper SE, Hacking A, Ghez C. Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control. J Neurophysiol. 2000;83:1886–99.

    PubMed  CAS  Google Scholar 

  104. Aksenov D, Serdyukova N, Irwin K, Bracha V. GABA neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity. J Neurophysiol. 2004;91:719–27.

    Article  PubMed  CAS  Google Scholar 

  105. Bracha V, Zbarska S, Parker K, Carrel A, Zenitsky G, Bloedel JR. The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience. 2009;162:787–96.

    Article  PubMed  CAS  Google Scholar 

  106. Aksenov DP, Serdyukova NA, Bloedel JR, Bracha V. Glutamate neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity. J Neurophysiol. 2005;93:44–52.

    Article  PubMed  CAS  Google Scholar 

  107. Somogyi P, Halasy K, Somogyi J, Storm-Mathisen J, Ottersen OP. Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum. Neuroscience. 1986;4:1045–50.

    Article  Google Scholar 

  108. Llinas R, Muhlethaler M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol. 1988;404:241–58.

    PubMed  CAS  Google Scholar 

  109. Konnerth A, Llano I. Armstrong synaptic currents in cerebellar Purkinje cells. Proc Natl Acad Sci USA. 1990;87:2662–5.

    Article  PubMed  CAS  Google Scholar 

  110. Silver RA, Traynelis SF, Cull-Candy SG. Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature. 1992;355:163–6.

    Article  PubMed  CAS  Google Scholar 

  111. Mihailoff GA. Cerebellar nuclear projections from the basilar pontine nuclei and nucleus reticularis tegmenti pontis as demonstrated with PHA-L tracing in the rat. J Comp Neurol. 1993;330:130–46.

    Article  PubMed  CAS  Google Scholar 

  112. Attwell PJ, Ivarsson M, Millar L, Yeo CH. Cerebellar mechanisms in eyeblink conditioning. Ann N Y Acad Sci. 2002;978:79–92.

    Article  PubMed  CAS  Google Scholar 

  113. Ohyama T, Nores WL, Medina JF, Riusech FA, Mauk MD. Learning-induced plasticity in deep cerebellar nucleus. J Neurosci. 2006;26:12656–63.

    Article  PubMed  CAS  Google Scholar 

  114. Kalmbach BE, Davis T, Ohyama T, Riusech F, Nores WL, Mauk MD. Cerebellar cortex contributions to the expression and timing of conditioned eyelid responses. J Neurophysiol. 2010;103(4):2039–49.

    Article  PubMed  Google Scholar 

  115. Mostofi A, Holtzman T, Grout AS, Yeo CH, Edgley SA. Electrophysiological localization of eyeblink-related microzones in rabbit cerebellar cortex. J Neurosci. 2010;30:8920–34.

    Article  PubMed  CAS  Google Scholar 

  116. Attwell PJ, Rahman S, Ivarsson M, Yeo CH. Cerebellar cortical AMPA-kainate receptor blockade prevents performance of classically conditioned nictitating membrane responses. J Neurosci. 1999;19:RC45.

    PubMed  CAS  Google Scholar 

  117. Schneiderman N, Fuentes I, Gormezano I. Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science. 1962;136:650–2.

    Article  PubMed  CAS  Google Scholar 

  118. Gormezano I, Kehoe EJ, Marshall BS. Twenty years of classical conditioning research with the rabbit. Prog Psychobiol Physiol Psychol. 1983;10:197–275.

    Google Scholar 

  119. Thompson RF. Are memory traces localized or distributed? Neuropsychologia. 1991;29:571–82.

    Article  PubMed  CAS  Google Scholar 

  120. Kim JJ, Thompson RF. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci. 1997;20:177–81.

    Article  PubMed  CAS  Google Scholar 

  121. McCormick DA, Thompson RF. Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J Neurosci. 1984;4:2811–22.

    PubMed  CAS  Google Scholar 

  122. Weiss C, Disterhoft JF, Gibson AR, Houk JC. Receptive fields of single cells from the face zone of the cat rostral dorsal accessory olive. Brain Res. 1993;605:207–13.

    Article  PubMed  CAS  Google Scholar 

  123. Gruart A, Delgado-García JM. Discharge of identified deep cerebellar nuclei neurons related to eye blinks in the alert cat. Neuroscience. 1994;61:665–81.

    Article  PubMed  CAS  Google Scholar 

  124. Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol. 2000;84:2680–90.

    PubMed  CAS  Google Scholar 

  125. Porras-García E, Sánchez-Campusano R, Martínez-Vargas D, Domínguez-del-Toro E, Cendelín J, Vozeh F, et al. Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J Neurophysiol. 2010;104:346–65.

    Article  PubMed  Google Scholar 

  126. Sun LW. Transsynaptic tracing of conditioned eyeblink circuits in the mouse cerebellum. Neuroscience. 2012;203:122–34.

    Article  PubMed  CAS  Google Scholar 

  127. Morcuende S, Delgado-García JM, Ugolini G. Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. J Neurosci. 2002;22:8808–18.

    PubMed  CAS  Google Scholar 

  128. Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn Mem. 2011;18:666–77.

    Article  PubMed  Google Scholar 

  129. Delgado-García JM, Gruart A. The role of interpositus nucleus in eyelid conditioned responses. Cerebellum. 2002;1:289–308.

    Article  PubMed  Google Scholar 

  130. Jiménez-Díaz L, de JD N-L, Gruart A, Delgado-García JM. Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J Neurosci. 2004;24:9138–45.

    Article  PubMed  CAS  Google Scholar 

  131. Delgado-García JM, Gruart A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci. 2006;29:330–8.

    Article  PubMed  CAS  Google Scholar 

  132. Delgado-García JM, Gruart A. Firing activities of identified posterior interpositus nucleus neurons during associative learning in behaving cats. Brain Res Brain Res Rev. 2005;49:367–76.

    Article  PubMed  Google Scholar 

  133. Sánchez-Campusano R, Gruart A, Delgado-García JM. An agonist–antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning. Front Neuroanat. 2012;6:8. doi:10.3389/fnana.2012.00008.

    Article  PubMed  Google Scholar 

  134. Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic associations in the cerebellar-motoneuron network during motor learning. J Neurosci. 2009;29:10750–63.

    Article  PubMed  CAS  Google Scholar 

  135. Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic changes in the cerebellar-interpositus/red-nucleus-motoneuron pathway during motor learning. Cerebellum. 2011;10:702–10.

    Article  PubMed  Google Scholar 

  136. Sánchez-Campusano R, Gruart A, Delgado-García JM. Timing and causality in the generation of learned eyelid responses. Front Integr Neurosci. 2011;5:39. doi:10.3389/fnint.2011.00039.

    Article  PubMed  Google Scholar 

  137. Holstege G, Blok BF, Ralston DD. Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey. Neurosci Lett. 1988;95:97–101.

    Article  PubMed  CAS  Google Scholar 

  138. Fujito Y, Aoki M. Monosynaptic rubrospinal projections to distal forelimb motoneurons in the cat. Exp Brain Res. 1995;105:181–90.

    Article  PubMed  CAS  Google Scholar 

  139. McCurdy ML, Hansma DI, Houk JC, Gibson AR. Selective projections from cat red nucleus to digit motor neurons. J Comp Neurol. 1987;265:367–79. Erratum in: J Comp Neurol. 1988;273:445.

    Article  PubMed  CAS  Google Scholar 

  140. Ralston DD, Milroy AM, Holstege G. Ultrastructural evidence for direct monosynaptic rubrospinal connections to motoneuron in Macaca mulatta. Neurosci Lett. 1988;95:102–6.

    Article  PubMed  CAS  Google Scholar 

  141. Gibson AR, Houk JC, Kohlerman NJ. Magnocellular red nucleus activity during different types of limb movement in the macaque monkey. J Physiol. 1985;358:527–49.

    PubMed  CAS  Google Scholar 

  142. van Kan PL, McCurdy ML. Role of primate magnocellular red nucleus neurons in controlling hand preshaping during reaching to grasp. J Neurophysiol. 2001;85:1461–78.

    PubMed  Google Scholar 

  143. Toyama K, Tsukahara N, Kosaka K, Matsunami K. Synaptic excitation of red nucleus neurones by fibres from interpositus nucleus. Exp Brain Res. 1970;11:187–98.

    Article  PubMed  CAS  Google Scholar 

  144. Gibson AR, Houk JC, Kohlerman NJ. Relation between red nucleus discharge and movement parameters in trained macaque monkeys. J Physiol. 1985;358:551–70.

    PubMed  CAS  Google Scholar 

  145. Mason CR, Miller LE, Baker JF, Houk JC. Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations. J Neurophysiol. 1998;79:537–54.

    PubMed  CAS  Google Scholar 

  146. Goldberger ME, Growdon JH. Pattern of recovery following cerebellar deep nuclear lesions in monkeys. Exp Neurol. 1973;39:307–22.

    Article  PubMed  CAS  Google Scholar 

  147. Apps R, Lee S. Central regulation of cerebellar climbing fibre input during motor learning. J Physiol. 2002;541:301–17.

    Article  PubMed  CAS  Google Scholar 

  148. Bracha V. Role of the cerebellum in eyeblink conditioning. Prog Brain Res. 2004;143:331–9.

    Article  PubMed  Google Scholar 

  149. Glickstein M, Doron K. Cerebellum: connections and functions. Cerebellum. 2008;7:589–94.

    Article  PubMed  Google Scholar 

  150. Lincoln JS, McCormick DA, Thompson RF. Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Res. 1982;242:190–3.

    Article  PubMed  CAS  Google Scholar 

  151. Welker W. Spatial organization of somatosensory projections to granule cell cerebellar cortex: functional and connectional implications of fractured somatotopy (summary of Wisconsin studies). In: King JS, editor. New concepts in cerebellar neurobiology. New York: Alan R. Liss; 1987. p. 239–80.

    Google Scholar 

  152. Giaquinta G, Valle MS, Caserta C, Casabona A, Bosco G, Perciavalle V. Sensory representation of passive movement kinematics by rat's spinocerebellar Purkinje cells. Neurosci Lett. 2000;285:41–4.

    Article  PubMed  CAS  Google Scholar 

  153. Burton JE, Onoda N. Dependence of the activity of interpositus and red nucleus neurons on sensory input data generated by movement. Brain Res. 1978;152:41–63.

    Article  PubMed  CAS  Google Scholar 

  154. Soechting JF, Burton JE, Onoda N. Relationships between sensory input, motor output and unit activity in interpositus and red nuclei during intentional movement. Brain Res. 1978;152:65–79.

    Article  PubMed  CAS  Google Scholar 

  155. Harvey RJ, Porter R, Rawson JA. Discharges of intracerebellar nuclear cells in monkeys. J Physiol. 1979;297:559–80.

    PubMed  CAS  Google Scholar 

  156. Casabona A, Valle MS, Bosco G, Garifoli A, Lombardo SA, Perciavalle V. Anisotropic representation of forelimb position in the cerebellar cortex and nucleus interpositus of the rat. Brain Res. 2003;972:127–36.

    Article  PubMed  CAS  Google Scholar 

  157. Casabona A, Valle MS, Bosco G, Perciavalle V. Cerebellar encoding of limb position. Cerebellum. 2004;3:172–7.

    Article  PubMed  Google Scholar 

  158. Casabona A, Valle MS, Bosco G, Perciavalle V. Comparison of neuronal activities of external cuneate nucleus, spinocerebellar cortex and interpositus nucleus during passive movements of the rat's forelimb. Neuroscience. 2008;157:271–9.

    Article  PubMed  CAS  Google Scholar 

  159. Valle MS, Bosco G, Casabona A, Garifoli A, Perciavalle V, Coco M, et al. Representation of movement velocity in the rat's interpositus nucleus during passive forelimb movements. Cerebellum. 2010;9:249–58.

    Article  PubMed  Google Scholar 

  160. MacKay WA. Unit activity in the cerebellar nuclei related to arm reaching movements. Brain Res. 1988;442:240–54.

    Article  PubMed  CAS  Google Scholar 

  161. Rowland NC, Jaeger D. Coding of tactile response properties in the rat deep cerebellar nuclei. J Neurophysiol. 2005;94:1236–51.

    Article  PubMed  Google Scholar 

  162. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  PubMed  CAS  Google Scholar 

  163. Soteropoulos DS, Baker SN. Bilateral representation in the deep cerebellar nuclei. J Physiol. 2008;586:1117–36.

    Article  PubMed  CAS  Google Scholar 

  164. Casabona A, Bosco G, Perciavalle V, Valle MS. Processing of limb kinematics in the interpositus nucleus. Cerebellum. 2010;9:103–10.

    Article  PubMed  Google Scholar 

  165. Milak MS, Shimansky Y, Bracha V, Bloedel JR. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol. 1997;78:939–59.

    PubMed  CAS  Google Scholar 

  166. Zackowski KM, Thach Jr WT, Bastian AJ. Cerebellar subjects show impaired coupling of reach and grasp movements. Exp Brain Res. 2002;146:511–22.

    Article  PubMed  CAS  Google Scholar 

  167. Thach WT, Bastian AJ. Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res. 2004;143:353–66.

    Article  PubMed  Google Scholar 

  168. Cooper SE, Martin JH, Ghez C. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement. J Neurophysiol. 2000;84:1988–2000.

    PubMed  CAS  Google Scholar 

  169. Miall RC, Weir DJ, Stein JF. Visuo-motor tracking during reversible inactivation of the cerebellum. Exp Brain Res. 1987;65:455–64.

    Article  PubMed  CAS  Google Scholar 

  170. Ebner TJ, Pasalar S. Cerebellum predicts the future motor state. Cerebellum. 2008;7:583–8.

    Article  PubMed  Google Scholar 

  171. Miall RC, King D. State estimation in the cerebellum. Cerebellum. 2008;7:572–6.

    Article  PubMed  Google Scholar 

  172. Greenough WT, Anderson BJ. Cerebellar synaptic plasticity. Relation to learning versus neural activity. Ann N Y Acad Sci. 1991;627:231–47.

    Article  PubMed  CAS  Google Scholar 

  173. Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, et al. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex. 2013;23:305–14.

    Article  PubMed  CAS  Google Scholar 

  174. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134:3672–86.

    Article  PubMed  Google Scholar 

  175. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  176. Molinari M, Filippini V, Leggio MG. Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience. 2002;111:863–70.

    Article  PubMed  CAS  Google Scholar 

  177. Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.

    Article  PubMed  Google Scholar 

  178. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.

    Article  PubMed  CAS  Google Scholar 

  179. Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44:113–28.

    Article  PubMed  CAS  Google Scholar 

  180. Silveri MC, Leggio MG, Molinari M. The cerebellum contributes to linguistic production: a case of agrammatic speech following a right cerebellar lesion. Neurology. 1994;44:2047–50.

    Article  PubMed  CAS  Google Scholar 

  181. Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, et al. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.

    Article  PubMed  Google Scholar 

  182. Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69:102–6.

    Article  PubMed  CAS  Google Scholar 

  183. Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127:561–74.

    Article  PubMed  Google Scholar 

  184. Molinari M, Petrosini L, Misciagna S, Leggio MG. Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry. 2004;75:235–40.

    PubMed  CAS  Google Scholar 

  185. Chiricozzi FR, Clausi S, Molinari M. Leggio MG phonological short-term store impairment after cerebellar lesion: a single case study. Neuropsychologia. 2008;46:1940–53.

    Article  PubMed  Google Scholar 

  186. Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.

    Article  PubMed  CAS  Google Scholar 

  187. Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11:336–51.

    Article  PubMed  Google Scholar 

  188. Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.

    Article  PubMed  Google Scholar 

  189. Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3:1049–56.

    Article  PubMed  CAS  Google Scholar 

  190. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.

    Article  PubMed  CAS  Google Scholar 

  191. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  192. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.

    Article  PubMed  Google Scholar 

  193. Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.

    Article  PubMed  CAS  Google Scholar 

  194. Annoni JM, Ptak R, Caldara-Schnetzer AS, Khateb A, Pollermann BZ. Decoupling of autonomic and cognitive emotional reactions after cerebellar stroke. Ann Neurol. 2003;53:654–8.

    Article  PubMed  Google Scholar 

  195. Schutter DJ, van Honk J. The cerebellum on the rise in human emotion. Cerebellum. 2005;4:290–4.

    Article  PubMed  Google Scholar 

  196. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.

    Article  PubMed  Google Scholar 

  197. Çavdar S, Şan T, Aker R, Şehirli U, Onat F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat. 2001;198:37–45.

    Article  PubMed  Google Scholar 

  198. Zhu JN, Li HZ, Ding Y, Wang JJ. Cerebellar modulation of feeding-related neurons in rat dorsomedial hypothalamic nucleus. J Neurosci Res. 2006;84:1597–609.

    Article  PubMed  CAS  Google Scholar 

  199. Wen YQ, Zhu JN, Zhang YP, Wang JJ. Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neurosci Lett. 2004;370(1):25–9.

    Article  PubMed  CAS  Google Scholar 

  200. Sauter DA, Eisner F, Ekman P, Scott SK. Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proc Natl Acad Sci U S A. 2010;107:2408–12.

    Article  PubMed  CAS  Google Scholar 

  201. Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci. 2002;99:8406–11.

    Article  PubMed  CAS  Google Scholar 

  202. Mintz M, Wang-Ninio Y. Two-stage theory of conditioning: involvement of the cerebellum and the amygdala. Brain Res. 2001;897:150–6.

    Article  PubMed  CAS  Google Scholar 

  203. Lu X, Miyachi S, Takada M. Anatomical evidence for the involvement of medial cerebellar output from the interpositus nuclei in cognitive functions. Proc Natl Acad Sci U S A. 2012;109:18980–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

R. Apps and N. Cerminara gratefully acknowledge the support of the Medical Research Council and the Biotechnology and Biological Sciences Research Council. V. Bracha and A. J. Carrel would like to thank Gary Zenitsky for his help in manuscript preparation; supported by NIH Grant R01-NS-036210. J. M. Delgado-García, R. Sánchez-Campusano and A. Gruart thank grants MICINN-BFU2008-0899, P07-CVI-2487 and JA-BIO-122 to JMDG, and MICINN-BFU2008-03390 and P07-CVI-02686 to AG. Also, we thank Roger Churchill for his editorial help. V. Perciavalle and M. Coco are grateful to students, postdoctoral fellows and colleagues, in particular to Gianfranco Bosco, Antonino Casabona and Maria Stella Valle, whose research and ideas contributed to the content of their contribution. M. Leggio acknowledges the support of the Italian Ministry of Health (grant RC11.G) and of the Santa Lucia Foundation.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Perciavalle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perciavalle, V., Apps, R., Bracha, V. et al. Consensus Paper: Current Views on the Role of Cerebellar Interpositus Nucleus in Movement Control and Emotion. Cerebellum 12, 738–757 (2013). https://doi.org/10.1007/s12311-013-0464-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0464-0

Keywords

Navigation