Skip to main content
Log in

Working Memory and Verbal Fluency Deficits Following Cerebellar Lesions: Relation to Interindividual Differences in Patient Variables

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Findings concerning cognitive impairment in patients with focal cerebellar lesions tend to be inconsistent and usually reflect a mild deficit. Patient variables such as lesion age and the age at lesion onset might affect functional reorganization and contribute to the variability of the findings. To assess this issue, 14 patients with focal vascular cerebellar lesions and 14 matched healthy control subjects performed a verbal working memory and a verbal long-term memory task as well as verbal fluency tasks. Patients showed deficits in working memory and verbal fluency, while recall of complex narrative material was intact. Verbal fluency performance correlated significantly with age in the patient group, with more severe impairments in older patients, suggesting that age at lesion onset is a critical variable for cognitive outcome. In controls, no significant correlations with age were observed. Taken together, our findings support the idea of cerebellar involvement in nonmotor functions and indicate the relevance of interindividual differences in regard to clinical parameters after focal cerebellar damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bellebaum C, Daum I. Cerebellar involvement in executive control. Cerebellum. 2007;6:184–92.

    Article  PubMed  Google Scholar 

  2. Ben-Yehudah G, Guediche S, Fiez JA. Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum. 2007;6:193–201.

    Article  PubMed  Google Scholar 

  3. Fiez JA, Petersen SE, Cheney MK, Raichle ME. Impaired non-motor learning and error detection associated with cerebellar damage. Brain. 1992;115:155–78.

    Article  PubMed  Google Scholar 

  4. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266:458–61.

    Article  CAS  PubMed  Google Scholar 

  5. Richter S, Gerwig M, Aslan B, Wilhelm H, Schoch B, Dimitrova A, et al. Cognitive functions in patients with MR-defined chronic focal cerebellar lesions. J Neurol. 2007;254(9):1193–203.

    Article  PubMed  Google Scholar 

  6. Molinari M, Leggio MG, Silveri MC. Verbal fluency and agrammatism. In: Schmahmann JD, editor. The cerebellum and cognition. International review of neurobiology, vol. 41. San Diego: Academic; 1997.

    Google Scholar 

  7. Silveri MC, Di Betta AM, Filippini V, Leggio MG, Molinari M. Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain. 1998;121:2175–87.

    Article  PubMed  Google Scholar 

  8. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129:306–20.

    Article  PubMed  Google Scholar 

  9. De Ribaupierre S, Ryser C, Villemure J-G, Clarke S. Cerebellar lesions: is there a lateralisation effect on memory deficits? Acta Neurochir Suppl (Wien). 2008;150:545–50.

    Article  Google Scholar 

  10. Grafman J, Litvan I, Massaquoi S, Stewart M, Sirigu A, Hallett M. Cognitive planning deficit in patients with cerebellar atrophy. Neurology. 1992;42(8):1493–6.

    CAS  PubMed  Google Scholar 

  11. Thoma P, Bellebaum C, Koch B, Schwarz M, Daum I. The cerebellum is involved in reward-based reversal learning. Cerebellum. 2008;7(3):433–43.

    Article  PubMed  Google Scholar 

  12. Drepper J, Timmann D, Kolb FP, Diener HC. Non-motor associative learning in patients with isolated degenerative cerebellar disease. Brain. 1999;122:87–97.

    Article  PubMed  Google Scholar 

  13. Gottwald B, Wilde B, Mihailovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75:1524–31.

    Article  CAS  PubMed  Google Scholar 

  14. Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, et al. Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci. 1999;19(13):5632–43.

    CAS  PubMed  Google Scholar 

  15. Golla H, Thier P, Haarmeier T. Disturbed overt but normal covert shifts of attention in adult cerebellar patients. Brain. 2005;128:1525–35.

    Article  PubMed  Google Scholar 

  16. Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6:202–13.

    Article  PubMed  Google Scholar 

  17. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.

    Article  PubMed  Google Scholar 

  18. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.

    Article  PubMed  Google Scholar 

  19. Riecker A, Ackermann H, Wildgruber D, Dogil G, Grodd W. Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. NeuroReport. 2000;11:1997–2000.

    Article  CAS  PubMed  Google Scholar 

  20. Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.

    Article  CAS  PubMed  Google Scholar 

  21. Awh E, Jonides J, Smith EE, Schumacher EH, Koeppe RA, Katz S. Dissociation of storage and rehearsal in verbal working memory: evidence from positron emission tomography. Psychol Sci. 1996;7:25–31.

    Article  Google Scholar 

  22. Jonides J, Schumacher EH, Smith EE, Lauber EJ, Awh E, Minoshima S, et al. Verbal working memory load affects regional brain activation as measured by PET. J Cogn Neurosci. 1997;9:462–75.

    Article  Google Scholar 

  23. Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature. 1993;362(6418):342–5.

    Article  CAS  PubMed  Google Scholar 

  24. Desmond JE, Gabrieli JDE, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–85.

    CAS  PubMed  Google Scholar 

  25. Chen S, Desmond J. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage. 2005;24:332–8.

    Article  PubMed  Google Scholar 

  26. Chen S, Desmond J. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–37.

    Article  PubMed  Google Scholar 

  27. Frank B, Schoch B, Richter S, Frings M, Karnath H-O, Timmann D. Cerebellar lesion studies of cognitive function in children and adolescents—limitations and negative findings. Cerebellum. 2007;6:242–53.

    Article  PubMed  Google Scholar 

  28. Braun M, Finke C, Ostendorf F, Lehmann T-N, Hoffmann K-T, Ploner CJ. Reorganization of associative memory in humans with long-standing hippocampal damage. Brain. 2008;131:2742–50.

    Article  PubMed  Google Scholar 

  29. Lidzba K, Wilke M, Staudt M, Krägeloh-Mann I, Grodd W. Reorganization of the cerebro-cerebellar network of language production in patients with congenital left-hemispheric brain lesions. Brain Lang. 2008;106(3):204–10.

    Article  CAS  PubMed  Google Scholar 

  30. Tillema JM, Byars AW, Jacola LM, Schapiro MB, Schmithorst VJ, Szaflarski JP, et al. Cortical reorganization of language functioning following perinatal left MCA stroke. Brain Lang. 2008;105(2):99–111.

    Article  PubMed  Google Scholar 

  31. Lucas 2nd TH, Drane DL, Dodrill CB, Ojemann GA. Language reorganization in aphasics: an electrical stimulation mapping investigation. Neurosurgery. 2008;63(3):487–97.

    Article  PubMed  Google Scholar 

  32. Karbe H, Thiel A, Weber-Luxenburger G, Herholz K, Kessler J, Heiss WD. Brain plasticity in poststroke aphasia: what is the contribution of the right hemisphere? Brain Lang. 1998;64(2):215–30.

    Article  CAS  PubMed  Google Scholar 

  33. Warburton E, Price CJ, Swinburn K, Wise RJ. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J Neurol Neurosurg Psychiatry. 1999;66(2):155–61.

    Article  CAS  PubMed  Google Scholar 

  34. Kokotilo KJ, Eng JJ, Boyd LA. Reorganization of brain function during force production after stroke: a systematic review of the literature. J Neurol Phys Ther. 2009;33(1):45–54.

    PubMed  Google Scholar 

  35. Haarmeier T, Thier P. The attentive cerebellum—myth or reality? Cerebellum. 2007;6:177–83.

    Article  PubMed  Google Scholar 

  36. Matsui, T., Hirano, As. An atlas of the human brain for computerized tomography/Takayoshi Matsui, Asao Hirano; with a foreword by H.M. Zimmerman, Tokyo: Igaku-Shoin 1978.

  37. Thoma P, Koch B, Heyder K, Schwarz M, Daum I. Subcortical contributions to multitasking and response inhibition. Behav Brain Res. 2008;194:214–22.

    Article  PubMed  Google Scholar 

  38. Dahl G. Reduzierter Wechsler Intelligenztest (short version of the Wechsler Intelligence Scale). München: Hain; 1972.

    Google Scholar 

  39. Zimmermann P, Fimm B. Testbatterie zur Aufmerksamkeitsprüfung (TAP). Version 1.02c. Freiburg: Psytest; 1993.

    Google Scholar 

  40. Härting C, Markowitsch HJ, Neufeld H, Calabrese P, Deisinger K, Kessler J, editors. WMS-R. Wechsler Gedächtnistest—revidierte Fassung. Manual. Deutsche Adaptation der revidierten Fassung der Wechsler Memory Scale von David Wechsler. Bern: Verlag Hans Huber; 2000.

    Google Scholar 

  41. Daum I, Reimold C, Spieker S. Kognitive Beeinträchtigungen im Frühstadium der Parkinsonschen Krankheit—Eine explorative Studie an 18 unmedizinierten de novo Patienten. Zeitschrift für Gerontopsychologie und—Psychiatrie. 1994;7(2):85–94.

    Google Scholar 

  42. Robert PH, Lafont V, Medecin I, Berthet L, Thauby S, Baudu C, et al. Clustering and switching strategies in verbal fluency tasks: comparison between schizophrenics and healthy adults. J Int Neuropsychol Soc. 1998;4(6):539–46.

    Article  CAS  PubMed  Google Scholar 

  43. Crawford JR, Garthwaite PH. Investigation of the single case in neuropsychology: confidence limits on the abnormality of test scores and test score differences. Neuropsychologia. 2002;40:1196–208.

    Article  CAS  PubMed  Google Scholar 

  44. Crawford JR, Howell DC. Comparing an individual's test score against norms derived from small samples. Clin Neuropsychol. 1998;12:482–6.

    Google Scholar 

  45. Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3(4):255–74.

    Article  PubMed  Google Scholar 

  46. Ziemus B, Baumann O, Luerding R, Schlosser R, Schuierer G, Bogdahn U, et al. Impaired working-memory after cerebellar infarcts paralleled by changes in BOLD signal of a cortico-cerebellar circuit. Neuropsychologia. 2007;45(9):2016–24.

    Article  CAS  PubMed  Google Scholar 

  47. Schmahmann JD, Sherman JC. The cerebellar cognitive and affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  48. Hokkanen LSK, Kauranen VO, Roine RO, Salonen O, Kotila M. Subtle cognitive deficits after cerebellar infarcts. Eur J Neurol. 2006;13:161–70.

    Article  CAS  PubMed  Google Scholar 

  49. Daum I, Ackermann H, Schugens MM, Reimold C, Dichgans J, Birbaumer N. The cerebellum and cognitive functions in humans. Behav Neurosci. 1993;107(3):411–9.

    Article  CAS  PubMed  Google Scholar 

  50. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  51. Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63:2125–32.

    Google Scholar 

  52. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by the German Research Society (DFG, Da 259/9-1).

Conflict of Interest

Herewith, the authors declare that there is no actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations that could inappropriately influence or be perceived to influence the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Peterburs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterburs, J., Bellebaum, C., Koch, B. et al. Working Memory and Verbal Fluency Deficits Following Cerebellar Lesions: Relation to Interindividual Differences in Patient Variables. Cerebellum 9, 375–383 (2010). https://doi.org/10.1007/s12311-010-0171-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0171-z

Keywords

Navigation