Skip to main content

Advertisement

Log in

Cognitive functions in patients with MR-defined chronic focal cerebellar lesions

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The aim of the present study was to examine cognitive functions in a group of chronic patients with focal cerebellar lesions. Both effects of localization (anterior vs. posterior lobe) and side (left vs. right cerebellar hemisphere) were of interest. Fourteen patients with infarctions within the territory of the posterior inferior cerebellar artery (PICA) and seven patients with infarctions within the territory of the superior cerebellar artery (SCA) participated. The affected lobules and nuclei were assessed based on 3D MR imaging. The right cerebellar hemisphere was affected in eight PICA and two SCA patients, the left hemisphere in six PICA and four SCA patients. One SCA patient revealed a bilateral lesion. In order to study possible lateralization of functions, subjects performed a language task as well as standard neglect and extinction tests. Moreover, two tests of executive functions were applied. There were no significant group differences apart from a verbal fluency task, in which all cerebellar patients - but especially those with right-sided lesions - were impaired. Voxel-based lesionsymptom mapping (VLSM) revealed that a lesion of the right hemispheric lobule Crus II was associated with impaired performance in the verbal fluency task. In sum, the results showed preserved cognitive abilities in chronic cerebellar patients apart from impairments of verbal fluency in patients with right-cerebellar lesions. The latter findings are in line with the assumption that the right posterolateral cerebellar hemisphere supports functions associated with verbal fluency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarsen FK, Van Dongen HR, Paquier PF, Van Mourik M, Catsman-Berrevoets CE (2004) Long-term sequelae in children after cerebellar astrocytoma surgery. Neurology 62(8):1311–1316

    CAS  PubMed  Google Scholar 

  2. Ackermann H, Hertrich I, Hehr T (1995) Oral diadochokinesis in neurological dysarthrias. Folia Phoniatr Logop 47(1):15–23

    Article  CAS  PubMed  Google Scholar 

  3. Ackermann H, Mathiak K, Ivry RB (2004) Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev 3(1):14–22

    Article  PubMed  Google Scholar 

  4. Ackermann H, Wildgruber D, Daum I, Grodd W (1998) Does the cerebellum contribute to cognitive aspects of speech production? A functional magnetic resonance imaging (fMRI) study in humans. Neurosci Lett 247:187–190

    Article  CAS  PubMed  Google Scholar 

  5. Amarenco P (1991) The spectrum of cerebellar infarctions. Neurology 41(7):973–979

    CAS  PubMed  Google Scholar 

  6. Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6(5):448–450

    CAS  PubMed  Google Scholar 

  7. Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12(1):1–7

    Article  CAS  PubMed  Google Scholar 

  8. Chen SH, Desmond JE (2005) Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage 24(2):332–338

    Article  PubMed  Google Scholar 

  9. Dimitrov M, Grafman J, Kosseff P, Wachs J, Always D, Higgins J, Litvan I, Lou JS, Hallett M (1996) Preserved cognitive processes in cerebellar degeneration. Behav Brain Res 79(1–2):131–135

    Article  CAS  PubMed  Google Scholar 

  10. Dronkers NF, Wilkins DP, Van Valin RD, Jr Redfern BB, Jaeger JJ (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92(1–2):145–177

    Article  PubMed  Google Scholar 

  11. Exner C, Weniger G, Irle E (2004) Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology 63:2132–2135

    PubMed  Google Scholar 

  12. Fabbro F, Tavano A, Corti S, Bresolin N, De Fabritiis P, Borgatti R (2004) Long-term neuropsychological deficits after cerebellar infarctions in two young adult twins. Neuropsychologia 42(4):536–545

    Article  CAS  PubMed  Google Scholar 

  13. Fiez JA, Petersen SE, Cheney MK, Raichle ME (1992) Impaired non-motor learning and error detection associated with cerebellar damage A single case study. Brain 115(Pt1):155–178

    Article  PubMed  Google Scholar 

  14. Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW, Grosse-Ruyken M, Ziemons K, Zilles K, Freund HJ (2000) Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology 54(6):1324–1331

    CAS  PubMed  Google Scholar 

  15. Fink GR, Marshall JC, Weiss PH, Zilles K (2001) The neural basis of vertical and horizontal line bisection judgements: an fMRI study of normal volunteers. Neuroimage 14(12):59–67

    Article  Google Scholar 

  16. Frank B, Schoch B, Hein-Kropp C, Dimitrova A, Hovel M, Ziegler W, Gizewski ER, Timmann D (2006) Verb generation in children and adolescents with acute cerebellar lesions. Neuropsychologia [Epub ahead of print]

  17. Gebhart A, Petersen S, Thach WT (2000) Evidence for functional lateralization of language operations to the right posterior cerebellum. Soc Neurosci Abstr 26:1246

    Google Scholar 

  18. Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A, Boring D, Thilmann AF, Forsting M, Diener HC, Timmann D (2003) Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain 126(Pt 1):71–94

    Article  CAS  PubMed  Google Scholar 

  19. Globas C, Bosch S, Zuhlke Ch, Daum I, Dichgans J, Burk K (2003) The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol 250(12):1482–1487

    Article  CAS  PubMed  Google Scholar 

  20. Gomez Beldarrain M, Garcia-Monco JC, Quintana JM, Llorens V, Rodeno E (1997) Diaschisis and neuropsychological performance after cerebellar stroke. Eur Neurol 37(2):82–89

    Article  CAS  PubMed  Google Scholar 

  21. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM (2004) Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry 75(11):1524–1531

    Article  CAS  PubMed  Google Scholar 

  22. Helmuth LL, Ivry RB, Shimizu N (1997) Preserved performance by cerebellar patients on tests of word generation discrimination learning and attention. Learn Mem 3(6):456–474

    Article  CAS  PubMed  Google Scholar 

  23. Horn W (1983) Leistungsprüfsystem (LPS) Handanweisung (2 erweiterte und verbesserte Auflage). Hogrefe, Göttingen

  24. Hubrich-Ungureanu P, Kaemmerer N, Henn FA, Braus DF (2005) Lateralized organization of the cerebellum in a silent verbal fluency task: a functional magnetic resonance imaging study in healthy volunteers. Neurosci Lett 319(2):91–94

    Article  Google Scholar 

  25. Karnath H-O, Himmelbach M, Ku¨kerW (2003) The cortical substrate of visual extinction. Neuroreport 14(3):437–442

    Article  PubMed  Google Scholar 

  26. Malm J, Kristensen B, Karlsson T, Carlberg B, Fagerlund M, Olsson T (1998) Cognitive impairment in young adults with infratentorial infarcts. Neurology 51:433–440

    CAS  PubMed  Google Scholar 

  27. Marien P, Engelborghs S, Fabbro F, De Deyn PP (2001) The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang 79(3):580–600

    Article  CAS  PubMed  Google Scholar 

  28. Merk M (2002) Entwicklung und Implementierung PC-gestützter akustischer Analyseverfahren für die klinische Diagnostik neurogener Sprechstörungen. Dissertation Universität der Bundeswehr, München

  29. Merk M, Ziegler W (1999) MoDiaS — A PC-based system for routine acoustic speech analysis of neurogenic speech disorders. In: Maasen B, Groenen P (eds) Pathologies of speech and language. Advances in clinical phonetics and linguistics. Whurr, London, pp 315–321

  30. Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21(2):700–712

    CAS  PubMed  Google Scholar 

  31. Molinari M, Leggio MG, Silveri MC (1997) Verbal fluency and agrammatism. Int Rev Neurobiol 41:325–339

    Article  CAS  PubMed  Google Scholar 

  32. Molinari M, Petrosini L, Misciagna S, Leggio MG (2004) Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry 75(2):235–240

    CAS  PubMed  Google Scholar 

  33. Neau JP, Arroyo-Anllo E, Bonnaud V, Ingrand P, Gil R (2000) Neuropsychological disturbances in cerebellar infarcts. Acta Neurol Scand 102:363–370

    Article  CAS  PubMed  Google Scholar 

  34. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1:97–113

    Article  Google Scholar 

  35. Petersen SE, Fox PT, Posner ML, Mintun M, Raichle ME (1989) Positron emission tomographic studies of the processing of single words. J Cogn Neurosci 1:153–170

    Article  Google Scholar 

  36. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain 129(Pt 2):306320

    Article  PubMed  Google Scholar 

  37. Richter S, Kaiser O, Hein-Kropp C, Dimitrova A, Gizewski E, Beck A, Aurich V, Ziegler W, Timmann D (2004) Preserved verb generation in patients with cerebellar atrophy. Neuropsychologia 42(9):1235–1246

    Article  CAS  PubMed  Google Scholar 

  38. Richter S, Schoch B, Kaiser O, Groetschel H, Hein-Kropp C, Maschke M, Dimitrova A, Gizewski E, Ziegler W, Karnath HO, Timmann D (2005) Children and adolescents with chronic cerebellar lesions show no clinically relevant signs of aphasia or neglect. J Neurophysiol 94(6):4108–4120

    Article  CAS  PubMed  Google Scholar 

  39. Richter S, Schoch B, Ozimek A, Gorissen B, Hein-Kropp C, Kaiser O, Hövel M, Wieland R, Gizewski E, Ziegler W, Timmann D (2005) Dysarthria is a rare sign in children with cerebellar tumors. Brain Lang 92(2):153–167

    Article  CAS  PubMed  Google Scholar 

  40. Riecker A, Ackermann H, Wildgruber D, Dogil G, Grodd W (2000) Opposite hemispheric lateralization effects during speaking and singing at motor cortex insula and cerebellum. Neuroreport 11(9):1997–2000

    Article  CAS  PubMed  Google Scholar 

  41. Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during development — Evidence from a series of children surgically treated for posterior fossa tumours. Brain 123:1051–1061

    Article  PubMed  Google Scholar 

  42. Rorden C, Karnath HO (2004) Using human brain lesions to infer function: a relic from a past era in the fMRI age? Nat Rev Neurosci 5(10):813–819

    Article  PubMed  CAS  Google Scholar 

  43. Roskies AL, Fiez JA, Balota DA, Raichle ME, Petersen SE (2001) Taskdependent modulation of regions in the left inferior frontal cortex during semantic processing. J Cogn Neurosci 13(6):829–843

    Article  CAS  PubMed  Google Scholar 

  44. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  45. Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, Mitchell CD (2001) Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol 43:685–691

    Article  CAS  PubMed  Google Scholar 

  46. Silveri MC, Di Betta AM, Filippini V, Leggio MG, Molinari M (1998) Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain 121:2175–2187

    Article  PubMed  Google Scholar 

  47. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283(5408):1657–1661

    Article  CAS  PubMed  Google Scholar 

  48. Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lövblad K-O, Ridolfi Lüthy A, Perrig W, Kaufmann F (2003) Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain 126:1998–2008

    Article  PubMed  Google Scholar 

  49. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timmann D, Honnorat J, Nighoghossian N, Manyam B (1997) International cooperative ataxia rating score for pharmacological assessment of the cerebellar syndrome. J Neurol Sci 45:205–211

    Article  Google Scholar 

  50. Vokaer M, Bier JC, Elincx S, Claes T, Paquier P, Goldman S, Bartholome EJ, Pandolfo M (2002) The cerebellum may be directly involved in cognitive functions. Neurology 58(6):967–970

    CAS  PubMed  Google Scholar 

  51. Weintraub S, Mesulam M-M (1985) Mental state assessment of young and elderly adults in behavioral neurology. In: Mesulam M-M (ed) Principles of behavioral neurology. FA Davis, Philadelphia, pp 71–123

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Richter PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, S., Gerwig, M., Aslan, B. et al. Cognitive functions in patients with MR-defined chronic focal cerebellar lesions. J Neurol 254, 1193–1203 (2007). https://doi.org/10.1007/s00415-006-0500-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0500-9

Key words

Navigation