Skip to main content

Advertisement

Log in

The Tumor-Promoting Flow of Cells Into, Within and Out of the Tumor Site: Regulation by the Inflammatory Axis of TNFα and Chemokines

  • Review Paper
  • Published:
Cancer Microenvironment

Abstract

Tumors are dynamic organs, in which active processes of cell motility affect disease course by regulating the composition of cells at the tumor site. While sub-populations of tumor-promoting leukocytes are recruited inward and endothelial cell migration stands in the basis of vascular branching throughout the tumor, cancer cells make their way out of the primary site towards specific metastatic sites. This review describes the independent and cross-regulatory roles of inflammatory chemokines and of the inflammatory cytokine tumor necrosis factor α (TNFα) in determining cell motility processes that eventually have profound effects on tumor growth and metastasis. First, the effects of inflammatory chemokines such as CCL2 (MCP-1), CCL5 (RANTES) and CXCL8 (IL-8) are described, regulating the inward flow of leukocyte sub-populations with pro-tumoral activities, such as tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), tumor-associated neutrophils (TAN), Th17 cells and Tregs. Then, the ability of inflammatory chemokines to induce endothelial cell migration, sprouting and tube formation is discussed, with its implications on tumor angiogenesis. This part is followed by an in depth description of the manners by which TNFα potentiates the above activities of the inflammatory chemokines, alongside with its ability to directly induce migratory processes in the tumor cells thus promoting metastasis. Note worthy is the ability of TNFα to induce in the tumor cells the important process of epithelial-to-mesenchymal transition (EMT). Emphasis is given to the ability of TNFα to establish an inflammatory network with the chemokines, and in parallel to form a cell re-modeling network together with transforming growth factor β (TGFβ). The review concludes by discussing the implications of such networks on disease course, and on the future design of therapeutic measures in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

Abbreviations

CAF:

Cancer-Associated Fibroblasts

DCIS:

Ductal Carcinoma In Situ

EMT:

Epithelial-to-Mesenchymal Transition

IDC:

Invasive Ductal Carcinoma

IFNγ:

Interferon γ

IL-1β:

Interleukin 1β

IMPC:

Invasive Micropapillary Carcinoma

MDSC:

Myeloid-Derived Suppressor Cells

MMP:

Matrix Metalloproteinases

MSC:

Mesenchymal Stem Cells

TAM:

Tumor-Associated Macrophages

TAN:

Tumor-Associated Neutrophils

TGFβ:

Transforming Growth Factor β

TNFα:

Tumor Necrosis Factor α

VEGF:

Vascular Endothelial Growth Factor

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  2. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 140:883–899

  3. Witz IP (2009) The tumor microenvironment: the making of a paradigm. Cancer Microenviron 2(Suppl 1):9–17

    Article  PubMed  Google Scholar 

  4. Balkwill F, Mantovani A (2010) Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther 87:401–406

    Article  PubMed  CAS  Google Scholar 

  5. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  CAS  Google Scholar 

  6. Erez N, Coussens LM (2011) Leukocytes as paracrine regulators of metastasis and determinants of organ-specific colonization. Int J Cancer 128:2536–2544

    Article  PubMed  CAS  Google Scholar 

  7. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  PubMed  CAS  Google Scholar 

  8. De Palma M, Lewis CE (2011) Cancer: Macrophages limit chemotherapy. Nature 472:303–304

    Article  PubMed  CAS  Google Scholar 

  9. Bonecchi R, Locati M, Mantovani A (2011) Chemokines and cancer: a fatal attraction. Cancer Cell 19:434–435

    Article  PubMed  CAS  Google Scholar 

  10. Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 16:133–144

  11. Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 411:1570–1579

  12. Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267:271–285

    Article  PubMed  CAS  Google Scholar 

  13. Conti I, Rollins BJ (2004) CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol 14:149–154

    Article  PubMed  CAS  Google Scholar 

  14. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    Article  PubMed  CAS  Google Scholar 

  15. Richmond A, Yang J, Su Y (2009) The good and the bad of chemokines/chemokine receptors in melanoma. Pigment Cell Melanoma Res 22:175–186

    Article  PubMed  CAS  Google Scholar 

  16. Keeley EC, Mehrad B, Strieter, RM. CXC chemokines in cancer angiogenesis and metastases. Adv Cancer Res 106:91–111

  17. Keeley EC, Mehrad B, Strieter RM (2008) Chemokines as mediators of neovascularization. Arterioscler Thromb Vasc Biol 28:1928–1936

    Article  PubMed  CAS  Google Scholar 

  18. Fulton AM (2009) The chemokine receptors CXCR4 and CXCR3 in cancer. Curr Oncol Rep 11:125–131

    Article  PubMed  CAS  Google Scholar 

  19. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9:361–371

    Article  PubMed  CAS  Google Scholar 

  20. Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 25:409–416

    Article  PubMed  CAS  Google Scholar 

  21. ten Hagen TL, Seynhaeve AL, Eggermont AM (2008) Tumor necrosis factor-mediated interactions between inflammatory response and tumor vascular bed. Immunol Rev 222:299–315

    Article  PubMed  Google Scholar 

  22. Mocellin S, Rossi CR, Pilati P, Nitti D (2005) Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev 16:35–53

    Article  PubMed  CAS  Google Scholar 

  23. Dinarello CA (2010) Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev 29:317–329

    Article  PubMed  CAS  Google Scholar 

  24. Apte RN, Voronov E (2008) Is interleukin-1 a good or bad ‘guy’ in tumor immunobiology and immunotherapy? Immunol Rev 222:222–241

    Article  PubMed  CAS  Google Scholar 

  25. Mantovani A, Bonecchi R, Locati M (2006) Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 6:907–918

    Article  PubMed  CAS  Google Scholar 

  26. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    Article  PubMed  CAS  Google Scholar 

  27. Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7:243

    Article  PubMed  CAS  Google Scholar 

  28. Laskin DL, Sunil VR, Gardner CR, Laskin JD (2011) Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol 51:267–288

    Article  PubMed  CAS  Google Scholar 

  29. Sedgwick JD, Riminton DS, Cyster JG, Korner H (2000) Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today 21:110–113

    Article  PubMed  CAS  Google Scholar 

  30. D’Ambrosio D, Mariani M, Panina-Bordignon P, Sinigaglia F (2001) Chemokines and their receptors guiding T lymphocyte recruitment in lung inflammation. Am J Respir Crit Care Med 164:1266–1275

    PubMed  Google Scholar 

  31. Furuichi K et al (2006) Interleukin-1-dependent sequential chemokine expression and inflammatory cell infiltration in ischemia-reperfusion injury. Crit Care Med 34:2447–2455

    Article  PubMed  CAS  Google Scholar 

  32. Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, O’Banion MK (2007) Chronic interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J Neurosci 27:9301–9309

    Article  PubMed  CAS  Google Scholar 

  33. Kaplanski G et al (1994) Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism. Blood 84:4242–4248

    PubMed  CAS  Google Scholar 

  34. Ben-Baruch A (ed) (2008) Expert commentary: The chemokine receptor CXCR3 and its ligands in malignancy: Do they act as double-edged swords?. Springer Publishers

  35. Lapteva N, Huang XF (2010) CCL5 as an adjuvant for cancer immunotherapy. Expert Opin Biol Ther 10:725–733

    Article  PubMed  CAS  Google Scholar 

  36. Huang B et al (2007) CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett 252:86–92

    Article  PubMed  CAS  Google Scholar 

  37. Ali S, Lazennec G (2007) Chemokines: novel targets for breast cancer metastasis. Cancer Metastasis Rev 26:401–420

    Article  PubMed  CAS  Google Scholar 

  38. Chen JQ, Russo J (2009) ERalpha-negative and triple negative breast cancer: molecular features and potential therapeutic approaches. Biochim Biophys Acta 1796:162–175

    PubMed  CAS  Google Scholar 

  39. Salcedo R et al (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96:34–40

    PubMed  CAS  Google Scholar 

  40. Lu X, Kang Y (2009) Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 284:29087–29096

    Article  PubMed  CAS  Google Scholar 

  41. Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  PubMed  CAS  Google Scholar 

  42. Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AE, Balkwill FR (2003) A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res 63:8360–8365

    PubMed  CAS  Google Scholar 

  43. Ginestier C et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120:485–497

    Article  PubMed  CAS  Google Scholar 

  44. Yoo JY et al (2008) Short hairpin RNA-expressing oncolytic adenovirus-mediated inhibition of IL-8: effects on antiangiogenesis and tumor growth inhibition. Gene Ther 15:635–651

    Article  PubMed  CAS  Google Scholar 

  45. Yao C et al (2007) Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer 121:1949–1957

    Article  PubMed  CAS  Google Scholar 

  46. Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 267:204–215

    Article  PubMed  CAS  Google Scholar 

  47. Sica A et al (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18:349–355

    Article  PubMed  CAS  Google Scholar 

  48. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  PubMed  CAS  Google Scholar 

  49. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326

    Article  PubMed  CAS  Google Scholar 

  50. Soria G, Ben-Baruch A (2009) The CCL5/CCR5 axis in cancer. Springer Publishers

  51. Ben-Baruch A (2006) The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev 25:357–371

    Article  PubMed  CAS  Google Scholar 

  52. Ben-Baruch A (in press) The inflammatory milieu of tumors: Cytokines and chemokines that affect tumor growth and metastasismetastasis. In Ben-Baruch A (ed), Inflammatory CC chemokines in malignancy: Leukocyte migration and beyond. Bentham Science Publishers.

  53. Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71:2411–2416

    Article  PubMed  CAS  Google Scholar 

  54. Wu QD, Wang JH, Condron C, Bouchier-Hayes D, Redmond HP (2001) Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 280:C814–822

    PubMed  CAS  Google Scholar 

  55. Queen MM, Ryan RE, Holzer RG, Keller-Peck CR, Jorcyk CL (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65:8896–8904

    Article  PubMed  CAS  Google Scholar 

  56. Fridlender ZG et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    Article  PubMed  CAS  Google Scholar 

  57. Vandercappellen J, Van Damme J, Struyf S (2008) The role of CXC chemokines and their receptors in cancer. Cancer Lett 267:226–244

    Article  PubMed  CAS  Google Scholar 

  58. Yao C, Lin Y, Ye CS, Bi J, Zhu YF, Wang SM (2007) Role of interleukin-8 in the progression of estrogen receptor-negative breast cancer. Chin Med J (Engl) 120:1766–1772

    CAS  Google Scholar 

  59. Salcedo R, Martins-Green M, Gertz B, Oppenheim JJ, Murphy WJ (2002) Combined administration of antibodies to human interleukin 8 and epidermal growth factor receptor results in increased antimetastatic effects on human breast carcinoma xenografts. Clin Cancer Res 8:2655–2665

    PubMed  CAS  Google Scholar 

  60. Kim MY et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326

    Article  PubMed  Google Scholar 

  61. Strell C, Lang K, Niggemann B, Zaenker KS, Entschladen F (2007) Surface molecules regulating rolling and adhesion to endothelium of neutrophil granulocytes and MDA-MB-468 breast carcinoma cells and their interaction. Cell Mol Life Sci 64:3306–3316

    Article  PubMed  CAS  Google Scholar 

  62. Strell C, Lang K, Niggemann B, Zaenker KS, Entschladen F (2010) Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Exp Cell Res 316:138–148

    Article  PubMed  CAS  Google Scholar 

  63. Andres AC, Djonov V (2010) The mammary gland vasculature revisited. J Mammary Gland Biol Neoplasia 15:319–328

    Article  PubMed  Google Scholar 

  64. Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32

    Article  PubMed  CAS  Google Scholar 

  65. Singh S, Wu S, Varney M, Singh AP, Singh RK (2011) CXCR1 and CXCR2 silencing modulates CXCL8-dependent endothelial cell proliferation, migration and capillary-like structure formation. Microvasc Res

  66. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71:2550–2560

    Article  PubMed  CAS  Google Scholar 

  67. Galvez BG et al (2005) Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. J Biol Chem 280:1292–1298

    Article  PubMed  CAS  Google Scholar 

  68. Miller LJ, Kurtzman SH, Wang Y, Anderson KH, Lindquist RR, Kreutzer DL (1998) Expression of interleukin-8 receptors on tumor cells and vascular endothelial cells in human breast cancer tissue. Anticancer Res 18:77–81

    PubMed  CAS  Google Scholar 

  69. Lin Y et al (2004) Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer 109:507–515

    Article  PubMed  CAS  Google Scholar 

  70. Bendrik C, Dabrosin C (2009) Estradiol increases IL-8 secretion of normal human breast tissue and breast cancer in vivo. J Immunol 182:371–378

    PubMed  CAS  Google Scholar 

  71. Toulza F, Eliaou JF, Pinet V (2005) Breast tumor cell soluble factors induce monocytes to produce angiogenic but not angiostatic CXC chemokines. Int J Cancer 115:429–436

    Article  PubMed  CAS  Google Scholar 

  72. Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV (2006) CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 177:2651–2661

    PubMed  CAS  Google Scholar 

  73. Weber KS, Nelson PJ, Grone HJ, Weber C (1999) Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and In vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol 19:2085–2093

    Article  PubMed  CAS  Google Scholar 

  74. Wilson TJ, Nannuru KC, Futakuchi M, Singh RK. Cathepsin G-mediated enhanced TGF-beta signaling promotes angiogenesis via upregulation of VEGF and MCP-1. Cancer Lett 288:162–169

  75. Barcelos LS, Talvani A, Teixeira AS, Cassali GD, Andrade SP, Teixeira MM (2004) Production and in vivo effects of chemokines CXCL1-3/KC and CCL2/JE in a model of inflammatory angiogenesis in mice. Inflamm Res 53:576–584

    Article  PubMed  CAS  Google Scholar 

  76. Ueno T et al (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6:3282–3289

    PubMed  CAS  Google Scholar 

  77. Goede V, Brogelli L, Ziche M, Augustin HG (1999) Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer 82:765–770

    Article  PubMed  CAS  Google Scholar 

  78. Qian BZ et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  PubMed  CAS  Google Scholar 

  79. Valkovic T, Lucin K, Krstulja M, Dobi-Babic R, Jonjic N (1998) Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer. Pathol Res Pract 194:335–340

    Article  PubMed  CAS  Google Scholar 

  80. Saji H et al (2001) Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92:1085–1091

    Article  PubMed  CAS  Google Scholar 

  81. Chavey C et al (2007) Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res 9:R15

    Article  PubMed  CAS  Google Scholar 

  82. Fujimoto H et al (2009) Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 125:1276–1284

    Article  PubMed  CAS  Google Scholar 

  83. Soria G et al (2008) Concomitant expression of the chemokines RANTES and MCP-1 in human breast cancer: a basis for tumor-promoting interactions. Cytokine 44:191–200

    Article  PubMed  CAS  Google Scholar 

  84. Neumark E, Anavi R, Witz IP, Ben-Baruch A (1999) MCP-1 expression as a potential contributor to the high malignancy phenotype of murine mammary adenocarcinoma cells. Immunol Lett 68:141–146

    Article  PubMed  CAS  Google Scholar 

  85. Neumark E, Cohn MA, Lukanidin E, Witz IP, Ben-Baruch A (2002) Possible co-regulation of genes associated with enhanced progression of mammary adenocarcinomas. Immunol Lett 82:111–121

    Article  PubMed  CAS  Google Scholar 

  86. Neumark E, Sagi-Assif O, Shalmon B, Ben-Baruch A, Witz IP (2003) Progression of mouse mammary tumors: MCP-1-TNFalpha cross-regulatory pathway and clonal expression of promalignancy and antimalignancy factors. Int J Cancer 106:879–886

    Article  PubMed  CAS  Google Scholar 

  87. Dupre SA, Redelman D, Hunter KW Jr (2007) The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci. Int J Exp Pathol 88:351–360

    Article  PubMed  CAS  Google Scholar 

  88. Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G. Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol 184:1630–1641

  89. Kurt RA, Baher A, Wisner KP, Tackitt S, Urba WJ (2001) Chemokine receptor desensitization in tumor-bearing mice. Cell Immunol 207:81–88

    Article  PubMed  CAS  Google Scholar 

  90. Soria G, Ofri-Shahak M, Haas I, Yaal-Hahoshen N, Leider-Trejo L, Leibovich-Rivkin T, Weitzenfeld P, Meshel T, Shabtai E, Gutman M, Ben-Baruch A (2011) An inflammatory network in breast cancer: coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer 11:130–149

    Google Scholar 

  91. Luboshits G et al (1999) Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 59:4681–4687

    PubMed  CAS  Google Scholar 

  92. Zhang Y et al (2009) Role of CCL5 in invasion, proliferation and proportion of CD44+/CD24- phenotype of MCF-7 cells and correlation of CCL5 and CCR5 expression with breast cancer progression. Oncol Rep 21:1113–1121

    PubMed  CAS  Google Scholar 

  93. Bieche I, Lerebours F, Tozlu S, Espie M, Marty M, Lidereau R (2004) Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Clin Cancer Res 10:6789–6795

    Article  PubMed  CAS  Google Scholar 

  94. Sauer G et al (2008) Prediction of nodal involvement in breast cancer based on multiparametric protein analyses from preoperative core needle biopsies of the primary lesion. Clin Cancer Res 14:3345–3353

    Article  PubMed  CAS  Google Scholar 

  95. Yaal-Hahoshen N et al (2006) The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clin Cancer Res 12:4474–4480

    Article  PubMed  CAS  Google Scholar 

  96. Luciani MG, Stoppacciaro A, Peri G, Mantovani A, Ruco LP (1998) The monocyte chemotactic protein a (MCP-1) and interleukin 8 (IL-8) in Hodgkin’s disease and in solid tumours. Mol Pathol 51:273–276

    Article  PubMed  CAS  Google Scholar 

  97. Palkowetz KH, Royer CL, Garofalo R, Rudloff HE, Schmalstieg FC Jr, Goldman AS (1994) Production of interleukin-6 and interleukin-8 by human mammary gland epithelial cells. J Reprod Immunol 26:57–64

    Article  PubMed  CAS  Google Scholar 

  98. Maheshwari A, Christensen RD, Calhoun DA (2003) ELR + CXC chemokines in human milk. Cytokine 24:91–102

    Article  PubMed  CAS  Google Scholar 

  99. Basolo F, Conaldi PG, Fiore L, Calvo S, Toniolo A (1993) Normal breast epithelial cells produce interleukins 6 and 8 together with tumor-necrosis factor: defective IL6 expression in mammary carcinoma. Int J Cancer 55:926–930

    Article  PubMed  CAS  Google Scholar 

  100. Basolo F et al (1996) Expression of and response to interleukin 6 (IL6) in human mammary tumors. Cancer Res 56:3118–3122

    PubMed  CAS  Google Scholar 

  101. Green AR, Green VL, White MC, Speirs V (1997) Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: identification of interleukin-8 as a potential regulatory factor in breast tumours. Int J Cancer 72:937–941

    Article  PubMed  CAS  Google Scholar 

  102. Speirs V, Green AR, White MC (1996) A comparative study of cytokine gene transcripts in normal and malignant breast tissue and primary cell cultures derived from the same tissue samples. Int J Cancer 66:551–556

    Article  PubMed  CAS  Google Scholar 

  103. Pantschenko AG et al (2003) The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 23:269–284

    PubMed  CAS  Google Scholar 

  104. Voss MJ, Moller MF, Powe DG, Niggemann B, Zanker KS, Entschladen F (2011) Luminal and basal-like breast cancer cells show increased migration induced by hypoxia, mediated by an autocrine mechanism. BMC Cancer 11:158

    Article  PubMed  CAS  Google Scholar 

  105. Chavey C et al (2008) Interleukin-8 expression is regulated by histone deacetylases through the nuclear factor-kappaB pathway in breast cancer. Mol Pharmacol 74:1359–1366

    Article  PubMed  CAS  Google Scholar 

  106. Freund A et al (2003) IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 22:256–265

    Article  PubMed  CAS  Google Scholar 

  107. Perrier S, Caldefie-Chezet F, Vasson MP (2009) IL-1 family in breast cancer: potential interplay with leptin and other adipocytokines. FEBS Lett 583:259–265

    Article  PubMed  CAS  Google Scholar 

  108. Singer CF et al (2006) Interleukin-1alpha protein secretion in breast cancer is associated with poor differentiation and estrogen receptor alpha negativity. Int J Gynecol Cancer 16(Suppl 2):556–559

    Article  PubMed  Google Scholar 

  109. Singer CF et al (2003) Interleukin 1 system and sex steroid receptor expression in human breast cancer: interleukin 1alpha protein secretion is correlated with malignant phenotype. Clin Cancer Res 9:4877–4883

    PubMed  CAS  Google Scholar 

  110. Jin L et al (1997) Expression of interleukin-1beta in human breast carcinoma. Cancer 80:421–434

    Article  PubMed  CAS  Google Scholar 

  111. Miles DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR (1994) Expression of tumour necrosis factor (TNF alpha) and its receptors in benign and malignant breast tissue. Int J Cancer 56:777–782

    Article  PubMed  CAS  Google Scholar 

  112. Pusztai L, Clover LM, Cooper K, Starkey PM, Lewis CE, McGee JO (1994) Expression of tumour necrosis factor alpha and its receptors in carcinoma of the breast. Br J Cancer 70:289–292

    Article  PubMed  CAS  Google Scholar 

  113. Leek RD, Landers R, Fox SB, Ng F, Harris AL, Lewis CE (1998) Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br J Cancer 77:2246–2251

    Article  PubMed  CAS  Google Scholar 

  114. Garcia-Tunon I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M (2006) Role of tumor necrosis factor-alpha and its receptors in human benign breast lesions and tumors (in situ and infiltrative). Cancer Sci 97:1044–1049

    Article  PubMed  CAS  Google Scholar 

  115. Berstein LM et al (2007) Signs of proinflammatory/genotoxic switch (adipogenotoxicosis) in mammary fat of breast cancer patients: role of menopausal status, estrogens and hyperglycemia. Int J Cancer 121:514–519

    Article  PubMed  CAS  Google Scholar 

  116. Cui LF et al (2008) Overexpression of TNF-alpha and TNFRII in invasive micropapillary carcinoma of the breast: clinicopathological correlations. Histopathology 53:381–388

    Article  PubMed  CAS  Google Scholar 

  117. Perrot-Applanat M et al (2011) Similar NF-kappaB gene signatures in TNF-alpha treated human endothelial cells and breast tumor biopsies. PLoS One 6:e21589

    Article  PubMed  CAS  Google Scholar 

  118. Shin SY, Nam JS, Lim Y, Lee YH (2010) TNFalpha-exposed bone marrow-derived mesenchymal stem cells promote locomotion of MDA-MB-231 breast cancer cells through transcriptional activation of CXCR3 ligand chemokines. J Biol Chem 285:30731–30740

    Article  PubMed  CAS  Google Scholar 

  119. Seeger H, Wallwiener D, Mueck AO (2008) Effects of estradiol and progestogens on tumor-necrosis factor-alpha-induced changes of biochemical markers for breast cancer growth and metastasis. Gynecol Endocrinol 24:576–579

    Article  PubMed  CAS  Google Scholar 

  120. Seeger H, Wallwiener D, Mueck AO (2006) Different effects of estradiol and various antiestrogens on TNF-alpha-induced changes of biochemical markers for growth and invasion of human breast cancer cells. Life Sci 78:1464–1468

    Article  PubMed  CAS  Google Scholar 

  121. Qian X, Zhang J, Liu J (2011) Tumor-secreted PGE2 inhibits CCL5 production in activated macrophages through cAMP/PKA signaling pathway. J Biol Chem 286:2111–2120

    Article  PubMed  CAS  Google Scholar 

  122. Ali S, Kaur J, Patel KD (2000) Intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and regulated on activation normal T cell expressed and secreted are expressed by human breast carcinoma cells and support eosinophil adhesion and activation. Am J Pathol 157:313–321

    Article  PubMed  CAS  Google Scholar 

  123. Azenshtein E et al (2002) The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res 62:1093–1102

    PubMed  CAS  Google Scholar 

  124. De Larco JE et al (2001) A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells. Am J Pathol 158:639–646

    Article  PubMed  Google Scholar 

  125. Pantschenko AG et al (2003) In vitro demonstration of breast cancer tumor cell sub-populations based on interleukin-1/tumor necrosis factor induction of interleukin-8 expression. Oncol Rep 10:1011–1017

    PubMed  CAS  Google Scholar 

  126. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564

    Article  PubMed  CAS  Google Scholar 

  127. Tomaskovic-Crook E, Thompson EW, Thiery JP (2009) Epithelial to mesenchymal transition and breast cancer. Breast Cancer Res 11:213

    Article  PubMed  CAS  Google Scholar 

  128. Zavadil J, Haley J, Kalluri R, Muthuswamy SK, Thompson E (2008) Epithelial-mesenchymal transition. Cancer Res 68:9574–9577

    Article  PubMed  CAS  Google Scholar 

  129. Vincent-Salomon A, Thiery JP (2003) Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res 5:101–106

    Article  PubMed  CAS  Google Scholar 

  130. Hollier BG, Evans K, Mani SA (2009) The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia 14:29–43

    Article  PubMed  Google Scholar 

  131. Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  132. Karin M, Gallagher E (2009) TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev 228:225–240

    Article  PubMed  CAS  Google Scholar 

  133. Estevam FR, Augusto SF, Rodrigues SA, Pinheiro MR, Monteiro AF (2005) Apoptosis and production of TNF-alpha by tumor-associated inflammatory cells in histological grade III breast cancer. Cancer Immunol Immunother 54:671–676

    Article  PubMed  CAS  Google Scholar 

  134. Gaafar A et al (2009) Defective gammadelta T-cell function and granzyme B gene polymorphism in a cohort of newly diagnosed breast cancer patients. Exp Hematol 37:838–848

    Article  PubMed  CAS  Google Scholar 

  135. Binder C et al (2009) Stromal endothelin B receptor-deficiency inhibits breast cancer growth and metastasis. Mol Cancer Ther 8:2452–2460

    Article  PubMed  CAS  Google Scholar 

  136. Jewell AN et al (2010) The endothelin axis stimulates the expression of pro-inflammatory cytokines and pro-migratory molecules in breast cancer. Cancer Invest 28:932–943

    Article  PubMed  CAS  Google Scholar 

  137. Das Roy L, Pathangey LB, Tinder TL, Schettini JL, Gruber HE, Mukherjee P (2009) Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis. Breast Cancer Res 11:R56

    Article  PubMed  CAS  Google Scholar 

  138. Romieu-Mourez R et al (2010) Mesenchymal stromal cells expressing ErbB-2/neu elicit protective antibreast tumor immunity in vivo, which is paradoxically suppressed by IFN-gamma and tumor necrosis factor-alpha priming. Cancer Res 70:7742–7747

    Article  PubMed  CAS  Google Scholar 

  139. Zhao X, Sun X, Gao F, Luo J, Sun Z (2011) Effects of ulinastatin and docataxel on breast tumor growth and expression of IL-6, IL-8, and TNF-alpha. J Exp Clin Cancer Res 30:22

    Article  PubMed  CAS  Google Scholar 

  140. Warren MA, Shoemaker SF, Shealy DJ, Bshar W, Ip MM (2009) Tumor necrosis factor deficiency inhibits mammary tumorigenesis and a tumor necrosis factor neutralizing antibody decreases mammary tumor growth in neu/erbB2 transgenic mice. Mol Cancer Ther 8:2655–2663

    Article  PubMed  CAS  Google Scholar 

  141. Sangaletti S et al (2010) Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis. Cancer Res 70:7764–7775

    Article  PubMed  CAS  Google Scholar 

  142. Hamaguchi T, Wakabayashi H, Matsumine A, Sudo A, Uchida A (2011) TNF inhibitor suppresses bone metastasis in a breast cancer cell line. Biochem Biophys Res Commun 407:525–530

    Article  PubMed  CAS  Google Scholar 

  143. Valdivia-Silva JE et al (2009) Effect of pro-inflammatory cytokine stimulation on human breast cancer: implications of chemokine receptor expression in cancer metastasis. Cancer Lett 283:176–185

    Article  PubMed  CAS  Google Scholar 

  144. Feng LY, Ou ZL, Wu FY, Shen ZZ, Shao ZM (2009) Involvement of a novel chemokine decoy receptor CCX-CKR in breast cancer growth, metastasis and patient survival. Clin Cancer Res 15:2962–2970

    Article  PubMed  CAS  Google Scholar 

  145. Vaday GG, Hershkoviz R, Rahat MA, Lahat N, Cahalon L, Lider O (2000) Fibronectin-bound TNF-alpha stimulates monocyte matrix metalloproteinase-9 expression and regulates chemotaxis. J Leukoc Biol 68:737–747

    PubMed  CAS  Google Scholar 

  146. Robinson SC, Scott KA, Balkwill FR (2002) Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur J Immunol 32:404–412

    Article  PubMed  CAS  Google Scholar 

  147. Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25:1543–1549

    Article  PubMed  CAS  Google Scholar 

  148. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15:416–428

    Article  PubMed  CAS  Google Scholar 

  149. Li T et al (2011) Daintain/AIF-1 promotes breast cancer cell migration by up-regulated TNF-alpha via activate p38 MAPK signaling pathway. Breast Cancer Res Treat

  150. Carpenter PM, Gatanaga T, Nguyen HP, Hiserodt JC (1997) Lymphocyte and monocyte-induced motility of MCF-7 cells by tumor necrosis factor-alpha. Int J Cancer 71:64–70

    Article  PubMed  CAS  Google Scholar 

  151. Mishra P, Banerjee D, Ben-Baruch A (2011) Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol 89:31–39

    Article  PubMed  CAS  Google Scholar 

  152. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601

    Article  PubMed  CAS  Google Scholar 

  153. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  154. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751

    Article  PubMed  CAS  Google Scholar 

  155. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134

    Article  PubMed  Google Scholar 

  156. Taylor MA, Parvani JG, Schiemann WP (2010) The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 15:169–190

    Article  PubMed  Google Scholar 

  157. Dong R, Wang Q, He XL, Chu YK, Lu JG, Ma QJ (2007) Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-alpha-induced epithelial-mesenchymal transition of MCF-7 cells. Braz J Med Biol Res 40:1071–1078

    Article  PubMed  CAS  Google Scholar 

  158. Zhou C et al (2008) Proteomic analysis of tumor necrosis factor-alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype. Breast Cancer Res 10:R105

    Article  PubMed  CAS  Google Scholar 

  159. Janji B et al (2010) The actin filament cross-linker L-plastin confers resistance to TNF-alpha in MCF-7 breast cancer cells in a phosphorylation-dependent manner. J Cell Mol Med 14:1264–1275

    Article  PubMed  CAS  Google Scholar 

  160. Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G (2010) Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 11:137

    Article  PubMed  CAS  Google Scholar 

  161. Yin Y, Chen X, Shu Y (2009) Gene expression of the invasive phenotype of TNF-alpha-treated MCF-7 cells. Biomed Pharmacother 63:421–428

    Article  PubMed  CAS  Google Scholar 

  162. Cho SG et al (2009) KiSS1 suppresses TNFalpha-induced breast cancer cell invasion via an inhibition of RhoA-mediated NF-kappaB activation. J Cell Biochem 107:1139–1149

    Article  PubMed  CAS  Google Scholar 

  163. Katoh M (2009) Integrative genomic analyses of ZEB2: Transcriptional regulation of ZEB2 based on SMADs, ETS1, HIF1alpha, POU/OCT, and NF-kappaB. Int J Oncol 34:1737–1742

    Article  PubMed  CAS  Google Scholar 

  164. Teng Y, Liu M, Cowell JK (2011) Functional interrelationship between the WASF3 and KISS1 metastasis-associated genes in breast cancer cells. Int J Cancer

  165. Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL (2011) TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res 71:4707–4719

    Article  PubMed  CAS  Google Scholar 

  166. Yamauchi Y et al (2010) Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta1. Exp Lung Res 36:12–24

    Article  PubMed  CAS  Google Scholar 

  167. Camara J, Jarai G (2010) Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis Tissue Repair 3:2

    Article  PubMed  CAS  Google Scholar 

  168. Kamitani S et al (2011) Simultaneous stimulation with TGF-beta1 and TNF-alpha induces epithelial mesenchymal transition in bronchial epithelial cells. Int Arch Allergy Immunol 155:119–128

    Article  PubMed  CAS  Google Scholar 

  169. Takahashi E et al (2010) Tumor necrosis factor-alpha regulates transforming growth factor-beta-dependent epithelial-mesenchymal transition by promoting hyaluronan-CD44-moesin interaction. J Biol Chem 285:4060–4073

    Article  PubMed  CAS  Google Scholar 

  170. Bates RC, Mercurio AM (2003) Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 14:1790–1800

    Article  PubMed  CAS  Google Scholar 

  171. Borthwick LA et al (2009) Epithelial to mesenchymal transition (EMT) and airway remodelling after human lung transplantation. Thorax 64:770–777

    Article  PubMed  CAS  Google Scholar 

  172. Maier HJ, Schmidt-Strassburger U, Huber MA, Wiedemann EM, Beug H, Wirth T (2010) NF-kappaB promotes epithelial-mesenchymal transition, migration and invasion of pancreatic carcinoma cells. Cancer Lett 295:214–228

    Article  PubMed  CAS  Google Scholar 

  173. Madhusudan S et al (2004) A phase II study of etanercept (Enbrel), a tumor necrosis factor alpha inhibitor in patients with metastatic breast cancer. Clin Cancer Res 10:6528–6534

    Article  PubMed  CAS  Google Scholar 

  174. Harrison ML et al (2007) Tumor necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J Clin Oncol 25:4542–4549

    Article  PubMed  CAS  Google Scholar 

  175. Brown ER et al (2008) A clinical study assessing the tolerability and biological effects of infliximab, a TNF-alpha inhibitor, in patients with advanced cancer. Ann Oncol 19:1340–1346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Israel Science Foundation, Israel Ministry of Health and Federico Foundation for supporting the studies related to this review, which were performed in her laboratory. The author also thanks the members of her laboratory for their contribution to studies on inflammation in cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adit Ben-Baruch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Baruch, A. The Tumor-Promoting Flow of Cells Into, Within and Out of the Tumor Site: Regulation by the Inflammatory Axis of TNFα and Chemokines. Cancer Microenvironment 5, 151–164 (2012). https://doi.org/10.1007/s12307-011-0094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0094-3

Keywords

Navigation