Skip to main content

Advertisement

Log in

Nerve palsy, dislocation and revision rate among the approaches for total hip arthroplasty: a Bayesian network meta-analysis

  • Review
  • Published:
MUSCULOSKELETAL SURGERY Aims and scope Submit manuscript

Abstract

Background

Total hip arthroplasty (THA) is one of the most performed intervention in orthopaedics surgery. Currently, there is no unanimous approval concerning the best approach for THA in terms of nerve palsies, dislocations and further revisions. Hence, a Bayesian network meta-analysis was conducted.

Methods

The present study was conducted according to the PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of healthcare interventions. The literature search was performed in September 2019. The NMA was performed through the STATA Software/MP routine for Bayesian hierarchical random-effects model analysis.

Results

Data from 10,675 THA were collected. The mean follow-up was 10 months. The anterior approach reported the lowest risk to incur a post-operative dislocation (overall inconsistency P = 0.99). The posterolateral approach reported the lowest risk to incur a nerve palsy (overall inconsistency P = 0.77). The funnel plot revealed a low risk of publication bias. The lateral approach was found to have the lowest risk of resulting in a revision surgery (overall inconsistency P = 0.90).

Conclusion

According to our network comparisons, the posterolateral approach for THA represent the favourable exposure with regards to nerve palsy, further dislocations and revision surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785. https://doi.org/10.2106/JBJS.F.00222

    Article  PubMed  Google Scholar 

  2. Inacio MCS, Graves SE, Pratt NL, Roughead EE, Nemes S (2017) Increase in total joint arthroplasty projected from 2014 to 2046 in Australia: a conservative local model with international implications. Clin Orthop Relat Res 475(8):2130–2137. https://doi.org/10.1007/s11999-017-5377-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Migliorini F, Biagini M, Rath B, Meisen N, Tingart M, Eschweiler J (2018) Total hip arthroplasty: minimally invasive surgery or not? Meta-analysis of clinical trials. Int Orthop. https://doi.org/10.1007/s00264-018-4124-3

    Article  PubMed  Google Scholar 

  4. Soong M, Rubash HE, Macaulay W (2004) Dislocation after total hip arthroplasty. J Am Acad Orthop Surg 12(5):314–321

    Article  Google Scholar 

  5. Brooks PJ (2013) Dislocation following total hip replacement: causes and cures. Bone Joint J 95-B(11 Suppl A):67–69. https://doi.org/10.1302/0301-620X.95B11.32645

    Article  CAS  PubMed  Google Scholar 

  6. Gausden EB, Parhar HS, Popper JE, Sculco PK, Rush BNM (2018) Risk factors for early dislocation following primary elective total hip arthroplasty. J Arthroplasty 33(5):1567–1571. https://doi.org/10.1016/j.arth.2017.12.034

    Article  PubMed  Google Scholar 

  7. Moretti VM, Post ZD (2017) Surgical approaches for total hip arthroplasty. Indian J Orthop 51(4):368–376. https://doi.org/10.4103/ortho.IJOrtho_317_16

    Article  PubMed  PubMed Central  Google Scholar 

  8. Connolly KP, Kamath AF (2016) Direct anterior total hip arthroplasty: comparative outcomes and contemporary results. World J Orthop 7(2):94–101. https://doi.org/10.5312/wjo.v7.i2.94

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miller LE, Gondusky JS, Kamath AF, Boettner F, Wright J, Bhattacharyya S (2018) Influence of surgical approach on complication risk in primary total hip arthroplasty. Acta Orthop 89(3):289–294. https://doi.org/10.1080/17453674.2018.1438694

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Z, Hou JZ, Wu CH, Zhou YJ, Gu XM, Wang HH, Feng W, Cheng YX, Sheng X, Bao HW (2018) A systematic review and meta-analysis of direct anterior approach versus posterior approach in total hip arthroplasty. J Orthop Surg Res 13(1):229. https://doi.org/10.1186/s13018-018-0929-4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catala-Lopez F, Gotzsche PC, Dickersin K, Boutron I, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Int Med 162(11):777–784. https://doi.org/10.7326/M14-2385

    Article  PubMed  Google Scholar 

  12. Howick JCI, Glasziou P, Greenhalgh T, Carl Heneghan, Liberati A, Moschetti I, Phillips B, Thornton H, Goddard O, Hodgkinson M (2011) The 2011 Oxford CEBM levels of evidence. Oxford centre for evidence-based medicine. https://www.cebmnet/indexaspx?o=5653

  13. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G (2013) Graphical tools for network meta-analysis in STATA. PLoS ONE 8(10):e76654. https://doi.org/10.1371/journal.pone.0076654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alecci V, Valente M, Crucil M, Minerva M, Pellegrino CM, Sabbadini DD (2011) Comparison of primary total hip replacements performed with a direct anterior approach versus the standard lateral approach: perioperative findings. J Orthop Traumatol 12(3):123–129. https://doi.org/10.1007/s10195-011-0144-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barrett WP, Turner SE, Leopold JP (2013) Prospective randomized study of direct anterior versus postero-lateral approach for total hip arthroplasty. J Arthroplast 28(9):1634–1638. https://doi.org/10.1016/j.arth.2013.01.034

    Article  Google Scholar 

  16. Berend KR, Lombardi AV Jr, Seng BE, Adams JB (2009) Enhanced early outcomes with the anterior supine intermuscular approach in primary total hip arthroplasty. J Bone Joint Surg Am 91(Suppl 6):107–120. https://doi.org/10.2106/JBJS.I.00525

    Article  PubMed  Google Scholar 

  17. Bergin PF, Doppelt JD, Kephart CJ, Benke MT, Graeter JH, Holmes AS, Haleem-Smith H, Tuan RS, Unger AS (2011) Comparison of minimally invasive direct anterior versus posterior total hip arthroplasty based on inflammation and muscle damage markers. J Bone Joint Surg Am 93(15):1392–1398. https://doi.org/10.2106/JBJS.J.00557

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berstock JR, Blom AW, Whitehouse MR (2017) A comparison of the omega and posterior approaches on patient reported function and radiological outcomes following total hip replacement. J Orthop 14(3):390–393. https://doi.org/10.1016/j.jor.2017.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  19. Biau DJ, Porcher R, Roren A, Babinet A, Rosencher N, Chevret S, Poiraudeau S, Anract P (2015) Neither pre-operative education or a minimally invasive procedure have any influence on the recovery time after total hip replacement. Int Orthop 39(8):1475–1481. https://doi.org/10.1007/s00264-015-2802-y

    Article  PubMed  Google Scholar 

  20. Chen M, Luo Z, Ji X, Cheng P, Tang G, Shang X (2017) Direct anterior approach for total hip arthroplasty in the lateral decubitus position: our experiences and early results. J Arthroplast 32(1):131–138. https://doi.org/10.1016/j.arth.2016.05.066

    Article  Google Scholar 

  21. Christensen CP, Karthikeyan T, Jacobs CA (2014) Greater prevalence of wound complications requiring reoperation with direct anterior approach total hip arthroplasty. J Arthroplast 29(9):1839–1841. https://doi.org/10.1016/j.arth.2014.04.036

    Article  Google Scholar 

  22. Dienstknecht T, Luring C, Tingart M, Grifka J, Sendtner E (2014) Total hip arthroplasty through the mini-incision (Micro-hip) approach versus the standard transgluteal (Bauer) approach: a prospective, randomised study. J Orthop Surg (Hong Kong) 22(2):168–172. https://doi.org/10.1177/230949901402200210

    Article  CAS  Google Scholar 

  23. Downing ND, Clark DI, Hutchinson JW, Colclough K, Howard PW (2001) Hip abductor strength following total hip arthroplasty: a prospective comparison of the posterior and lateral approach in 100 patients. Acta Orthop Scand 72(3):215–220. https://doi.org/10.1080/00016470152846501

    Article  CAS  PubMed  Google Scholar 

  24. Engdal M, Foss OA, Taraldsen K, Husby VS, Winther SB (2017) Daily physical activity in total hip arthroplasty patients undergoing different surgical approaches: a cohort study. Am J Phys Med Rehabil 96(7):473–478. https://doi.org/10.1097/PHM.0000000000000657

    Article  PubMed  Google Scholar 

  25. Fink B, Mittelstaedt A (2012) Minimally invasive posterior approach for total hip arthroplasty. Orthopade 41(5):382–389. https://doi.org/10.1007/s00132-011-1893-4

    Article  CAS  PubMed  Google Scholar 

  26. Fransen B, Hoozemans M, Vos S (2016) Direct anterior approach versus posterolateral approach in total hip arthroplasty : one surgeon, two approaches. Acta Orthop Belg 82(2):240–248

    CAS  PubMed  Google Scholar 

  27. Goebel S, Steinert AF, Schillinger J, Eulert J, Broscheit J, Rudert M, Noth U (2012) Reduced postoperative pain in total hip arthroplasty after minimal-invasive anterior approach. Int Orthop 36(3):491–498. https://doi.org/10.1007/s00264-011-1280-0

    Article  PubMed  Google Scholar 

  28. Goosen JH, Kollen BJ, Castelein RM, Kuipers BM, Verheyen CC (2011) Minimally invasive versus classic procedures in total hip arthroplasty: a double-blind randomized controlled trial. Clin Orthop Relat Res 469(1):200–208. https://doi.org/10.1007/s11999-010-1331-7

    Article  PubMed  Google Scholar 

  29. Gore DR, Murray MP, Sepic SB, Gardner GM (1982) Anterolateral compared to posterior approach in total hip arthroplasty: differences in component positioning, hip strength, and hip motion. Clin Orthop Relat Res 165:180–187

    Google Scholar 

  30. Hananouchi T, Takao M, Nishii T, Miki H, Iwana D, Yoshikawa H, Sugano N (2009) Comparison of navigation accuracy in THA between the mini-anterior and -posterior approaches. Int J Med Robot 5(1):20–25. https://doi.org/10.1002/rcs.226

    Article  PubMed  Google Scholar 

  31. Ji HM, Kim KC, Lee YK, Ha YC, Koo KH (2012) Dislocation after total hip arthroplasty: a randomized clinical trial of a posterior approach and a modified lateral approach. J Arthroplast 27(3):378–385. https://doi.org/10.1016/j.arth.2011.06.007

    Article  Google Scholar 

  32. Joseph NM, Roberts J, Mulligan MT (2017) Financial impact of total hip arthroplasty: a comparison of anterior versus posterior surgical approaches. Arthroplast Today 3(1):39–43. https://doi.org/10.1016/j.artd.2016.01.002

    Article  PubMed  Google Scholar 

  33. Laffosse JM, Chiron P, Molinier F, Bensafi H, Puget J (2007) Prospective and comparative study of the anterolateral mini-invasive approach versus minimally invasive posterior approach for primary total hip replacement. Early Res Int Orthop 31(5):597–603. https://doi.org/10.1007/s00264-006-0247-z

    Article  CAS  Google Scholar 

  34. Laffosse JM, Accadbled F, Molinier F, Chiron P, Hocine B, Puget J (2008) Anterolateral mini-invasive versus posterior mini-invasive approach for primary total hip replacement. Comparison of exposure and implant positioning. Arch Orthop Trauma Surg 128(4):363–369. https://doi.org/10.1007/s00402-007-0385-9

    Article  PubMed  Google Scholar 

  35. Leuchte S, Luchs A, Wohlrab D (2007) Measurement of ground reaction forces after total hip arthroplasty using different surgical approaches. Z Orthop Ihre Grenzgeb 145(1):74–80. https://doi.org/10.1055/s-2007-960511

    Article  CAS  PubMed  Google Scholar 

  36. Ilchmann T, Gersbach S, Zwicky L, Clauss M (2013) Standard transgluteal versus minimal invasive anterior approach in hip arthroplasty: a prospective. Consecutive Cohort Stud Orthop Rev (Pavia) 5(4):e31. https://doi.org/10.4081/or.2013.e31

    Article  Google Scholar 

  37. Malek IA, Royce G, Bhatti SU, Whittaker JP, Phillips SP, Wilson IR, Wootton JR, Starks I (2016) A comparison between the direct anterior and posterior approaches for total hip arthroplasty: the role of an 'Enhanced Recovery' pathway. Bone Joint J 98-B(6):754–760. https://doi.org/10.1302/0301-620X.98B6.36608

    Article  CAS  PubMed  Google Scholar 

  38. Martin R, Clayson PE, Troussel S, Fraser BP, Docquier PL (2011) Anterolateral minimally invasive total hip arthroplasty: a prospective randomized controlled study with a follow-up of 1 year. J Arthroplast 26(8):1362–1372. https://doi.org/10.1016/j.arth.2010.11.016

    Article  Google Scholar 

  39. Martin CT, Pugely AJ, Gao Y, Clark CR (2013) A comparison of hospital length of stay and short-term morbidity between the anterior and the posterior approaches to total hip arthroplasty. J Arthroplast 28(5):849–854. https://doi.org/10.1016/j.arth.2012.10.029

    Article  Google Scholar 

  40. Mjaaland KE, Kivle K, Svenningsen S, Nordsletten L (2019) Do Postoperative results differ in a randomized trial between a direct anterior and a direct lateral approach in THA? Clin Orthop Relat Res 477(1):145–155. https://doi.org/10.1097/CORR.0000000000000439

    Article  PubMed  Google Scholar 

  41. Muller M, Tohtz S, Springer I, Dewey M, Perka C (2011) Randomized controlled trial of abductor muscle damage in relation to the surgical approach for primary total hip replacement: minimally invasive anterolateral versus modified direct lateral approach. Arch Orthop Trauma Surg 131(2):179–189. https://doi.org/10.1007/s00402-010-1117-0

    Article  PubMed  Google Scholar 

  42. Nakata K, Nishikawa M, Yamamoto K, Hirota S, Yoshikawa H (2009) A clinical comparative study of the direct anterior with mini-posterior approach: two consecutive series. J Arthroplast 24(5):698–704. https://doi.org/10.1016/j.arth.2008.04.012

    Article  Google Scholar 

  43. Nam D, Sculco PK, Abdel MP, Alexiades MM, Figgie MP, Mayman DJ (2013) Leg-length inequalities following THA based on surgical technique. Orthopedics 36(4):e395–400. https://doi.org/10.3928/01477447-20130327-11

    Article  PubMed  Google Scholar 

  44. Palan J, Gulati A, Andrew JG, Murray DW, Beard DJ, Group ES (2009) The trainer, the trainee and the surgeons' assistant: clinical outcomes following total hip replacement. J Bone Joint Surg Br 91(7):928–934. https://doi.org/10.1302/0301-620X.91B7.22021

    Article  CAS  PubMed  Google Scholar 

  45. Petis SM, Howard JL, Lanting BA, Marsh JD, Vasarhelyi EM (2016) In-hospital cost analysis of total hip arthroplasty: does surgical approach matter? J Arthroplast 31(1):53–58. https://doi.org/10.1016/j.arth.2015.08.034

    Article  Google Scholar 

  46. Poehling-Monaghan KL, Krych AJ, Levy BA, Trousdale RT, Sierra RJ (2017) Female sex is a risk factor for failure of hip arthroscopy performed for acetabular retroversion. Orthop J Sports Med 5(11):2325967117737479. https://doi.org/10.1177/2325967117737479

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pogliacomi F, De Filippo M, Paraskevopoulos A, Alesci M, Marenghi P, Ceccarelli F (2012) Mini-incision direct lateral approach versus anterior mini-invasive approach in total hip replacement: results 1 year after surgery. Acta Biomed 83(2):114–121

    PubMed  Google Scholar 

  48. Pospischill M, Kranzl A, Attwenger B, Knahr K (2010) Minimally invasive compared with traditional transgluteal approach for total hip arthroplasty: a comparative gait analysis. J Bone Joint Surg Am 92(2):328–337. https://doi.org/10.2106/JBJS.H.01086

    Article  CAS  PubMed  Google Scholar 

  49. Queen RM, Schaeffer JF, Butler RJ, Berasi CC, Kelley SS, Attarian DE, Bolognesi MP (2013) Does surgical approach during total hip arthroplasty alter gait recovery during the first year following surgery? J Arthroplast 28(9):1639–1643. https://doi.org/10.1016/j.arth.2013.02.008

    Article  Google Scholar 

  50. Radoicic D, Zec V, Elassuity WI, Azab MA (2018) Patient's perspective on direct anterior versus posterior approach total hip arthroplasty. Int Orthop 42(12):2771–2775. https://doi.org/10.1007/s00264-018-4002-z

    Article  PubMed  Google Scholar 

  51. Rathod PA, Bhalla S, Deshmukh AJ, Rodriguez JA (2014) Does fluoroscopy with anterior hip arthroplasty decrease acetabular cup variability compared with a nonguided posterior approach? Clin Orthop Relat Res 472(6):1877–1885. https://doi.org/10.1007/s11999-014-3512-2

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rathod PA, Orishimo KF, Kremenic IJ, Deshmukh AJ, Rodriguez JA (2014) Similar improvement in gait parameters following direct anterior and posterior approach total hip arthroplasty. J Arthroplast 29(6):1261–1264. https://doi.org/10.1016/j.arth.2013.11.021

    Article  Google Scholar 

  53. Reichert JC, von Rottkay E, Roth F, Renz T, Hausmann J, Kranz J, Rackwitz L, Noth U, Rudert M (2018) A prospective randomized comparison of the minimally invasive direct anterior and the transgluteal approach for primary total hip arthroplasty. BMC Musculoskelet Disord 19(1):241. https://doi.org/10.1186/s12891-018-2133-4

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rittmeister M, Peters A (2006) Comparison of total hip arthroplasty via a posterior mini-incision versus a classic anterolateral approach. Orthopade 35(7):718–722. https://doi.org/10.1007/s00132-006-0963-5

    Article  Google Scholar 

  55. Rodriguez JA, Deshmukh AJ, Rathod PA, Greiz ML, Deshmane PP, Hepinstall MS, Ranawat AS (2014) Does the direct anterior approach in THA offer faster rehabilitation and comparable safety to the posterior approach? Clin Orthop Relat Res 472(2):455–463. https://doi.org/10.1007/s11999-013-3231-0

    Article  PubMed  Google Scholar 

  56. Rosenlund S, Broeng L, Holsgaard-Larsen A, Jensen C, Overgaard S (2017) Patient-reported outcome after total hip arthroplasty: comparison between lateral and posterior approach. Acta Orthop 88(3):239–247. https://doi.org/10.1080/17453674.2017.1291100

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rykov K, Reininga IHF, Sietsma MS, Knobben BAS, Ten Have B (2017) Posterolateral versus direct anterior approach in total hip arthroplasty (POLADA trial): a randomized controlled trial to assess differences in serum markers. J Arthroplast 32(12):3652–3658. https://doi.org/10.1016/j.arth.2017.07.008

    Article  Google Scholar 

  58. Schleicher I, Haas H, Adams TS, Szalay G, Klein H, Kordelle J (2011) Minimal-invasive posterior approach for total hip arthroplasty versus standard lateral approach. Acta Orthop Belg 77(4):480–487

    PubMed  Google Scholar 

  59. Sendtner E, Borowiak K, Schuster T, Woerner M, Grifka J, Renkawitz T (2011) Tackling the learning curve: comparison between the anterior, minimally invasive (Micro-hip(R)) and the lateral, transgluteal (Bauer) approach for primary total hip replacement. Arch Orthop Trauma Surg 131(5):597–602. https://doi.org/10.1007/s00402-010-1174-4

    Article  PubMed  Google Scholar 

  60. Spaans AJ, van den Hout JA, Bolder SB (2012) High complication rate in the early experience of minimally invasive total hip arthroplasty by the direct anterior approach. Acta Orthop 83(4):342–346. https://doi.org/10.3109/17453674.2012.711701

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sugano N, Takao M, Sakai T, Nishii T, Miki H, Nakamura N (2009) Comparison of mini-incision total hip arthroplasty through an anterior approach and a posterior approach using navigation. Orthop Clin North Am 40(3):365–370. https://doi.org/10.1016/j.ocl.2009.04.003

    Article  PubMed  Google Scholar 

  62. Takada R, Jinno T, Miyatake K, Hirao M, Kimura A, Koga D, Yagishita K, Okawa A (2018) Direct anterior versus anterolateral approach in one-stage supine total hip arthroplasty. Focused on nerve injury: a prospective, randomized, controlled trial. J Orthop Sci 23(5):783–787. https://doi.org/10.1016/j.jos.2018.05.005

    Article  PubMed  Google Scholar 

  63. Taunton MJ, Mason JB, Odum SM, Springer BD (2014) Direct anterior total hip arthroplasty yields more rapid voluntary cessation of all walking aids: a prospective, randomized clinical trial. J Arthroplast 29(9 Suppl):169–172. https://doi.org/10.1016/j.arth.2014.03.051

    Article  Google Scholar 

  64. Vicente JR, Croci AT, Camargo OP (2008) Blood loss in the minimally invasive posterior approach to total hip arthroplasty: a comparative study. Clin (Sao Paulo) 63(3):351–356. https://doi.org/10.1590/s1807-59322008000300011

    Article  Google Scholar 

  65. Wayne N, Stoewe R (2009) Primary total hip arthroplasty: a comparison of the lateral Hardinge approach to an anterior mini-invasive approach. Orthop Rev (Pavia) 1(2):e27. https://doi.org/10.4081/or.2009.e27

    Article  Google Scholar 

  66. Wohlrab D, Hagel A, Hein W (2004) Advantages of minimal invasive total hip replacement in the early phase of rehabilitation. Z Orthop Ihre Grenzgeb 142(6):685–690. https://doi.org/10.1055/s-2004-832447

    Article  CAS  PubMed  Google Scholar 

  67. Yang CF, Zhu QS, Han YS, Zhu JY, Wang HQ, Cong R, Zhang DW (2009) Anterolateral minimally-invasive total hip arthroplasty: a clinical comparative study of 110 cases. Zhonghua Yi Xue Za Zhi 89(1):2–6

    PubMed  Google Scholar 

  68. Zawadsky MW, Paulus MC, Murray PJ, Johansen MA (2014) Early outcome comparison between the direct anterior approach and the mini-incision posterior approach for primary total hip arthroplasty: 150 consecutive cases. J Arthroplast 29(6):1256–1260. https://doi.org/10.1016/j.arth.2013.11.013

    Article  Google Scholar 

  69. Zhang XL, Wang Q, Jiang Y, Zeng BF (2006) Minimally invasive total hip arthroplasty with anterior incision. Zhonghua Wai Ke Za Zhi 44(8):512–515

    PubMed  Google Scholar 

  70. Zhao HY, Kang PD, Xia YY, Shi XJ, Nie Y, Pei FX (2017) Comparison of early functional recovery after total hip arthroplasty using a direct anterior or posterolateral approach: a randomized controlled trial. J Arthroplast 32(11):3421–3428. https://doi.org/10.1016/j.arth.2017.05.056

    Article  Google Scholar 

  71. Eftekhar NS, Stinchfield FE (1973) Experience with low-friction arthroplasty. A statistical review of early results and complications. Clin Orthop Relat Res 95:60–68

    Google Scholar 

  72. Farrell CM, Springer BD, Haidukewych GJ, Morrey BF (2005) Motor nerve palsy following primary total hip arthroplasty. J Bone Joint Surg Am 87(12):2619–2625. https://doi.org/10.2106/JBJS.C.01564

    Article  PubMed  Google Scholar 

  73. Su EP (2017) Post-operative neuropathy after total hip arthroplasty. Bone Joint J 99-B(1 Suppl):46–49. https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0430.R1

    Article  CAS  PubMed  Google Scholar 

  74. Schmalzried TP, Noordin S, Amstutz HC (1997) Update on nerve palsy associated with total hip replacement. Clin Orthop Relat Res 344:188–206

    Article  Google Scholar 

  75. Navarro RA, Schmalzried TP, Amstutz HC, Dorey FJ (1995) Surgical approach and nerve palsy in total hip arthroplasty. J Arthroplast 10(1):1–5

    Article  CAS  Google Scholar 

  76. Brown GD, Swanson EA, Nercessian OA (2008) Neurologic injuries after total hip arthroplasty. Am J Orthop (Belle Mead NJ) 37(4):191–197

    Google Scholar 

  77. Edwards BN, Tullos HS, Noble PC (1987) Contributory factors and etiology of sciatic nerve palsy in total hip arthroplasty. Clin Orthop Relat Res 218:136–141

    Google Scholar 

  78. De Fine M, Romagnoli M, Zaffagnini S, Pignatti G (2017) Sciatic nerve palsy following total hip replacement: are patients personal characteristics more important than limb lengthening? Syst Rev Biomed Res Int 2017:8361071. https://doi.org/10.1155/2017/8361071

    Article  Google Scholar 

  79. Dargel J, Oppermann J, Bruggemann GP, Eysel P (2014) Dislocation following total hip replacement. Dtsch Arztebl Int 111(51–52):884–890. https://doi.org/10.3238/arztebl.2014.0884

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zahar A, Rastogi A, Kendoff D (2013) Dislocation after total hip arthroplasty. Curr Rev Musculoskelet Med 6(4):350–356. https://doi.org/10.1007/s12178-013-9187-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Masonis JL, Bourne RB (2002) Surgical approach, abductor function, and total hip arthroplasty dislocation. Clin Orthop Relat Res 405:46–53

    Article  Google Scholar 

  82. Goldstein WM, Gleason TF, Kopplin M, Branson JJ (2001) Prevalence of dislocation after total hip arthroplasty through a posterolateral approach with partial capsulotomy and capsulorrhaphy. J Bone Joint Surg Am 83-A(Suppl 2 (Pt 1)):2–7

    Article  Google Scholar 

  83. Ranawat CS, Rao RR, Rodriguez JA, Bhende HS (2001) Correction of limb-length inequality during total hip arthroplasty. J Arthroplast 16(6):715–720. https://doi.org/10.1054/arth.2001.24442

    Article  CAS  Google Scholar 

  84. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR (1978) Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 60(2):217–220

    Article  CAS  Google Scholar 

  85. Biedermann R, Tonin A, Krismer M, Rachbauer F, Eibl G, Stockl B (2005) Reducing the risk of dislocation after total hip arthroplasty: the effect of orientation of the acetabular component. J Bone Joint Surg Br 87(6):762–769. https://doi.org/10.1302/0301-620X.87B6.14745

    Article  CAS  PubMed  Google Scholar 

  86. Moskal JT, Capps SG (2011) Acetabular component positioning in total hip arthroplasty: an evidence-based analysis. J Arthroplast 26(8):1432–1437. https://doi.org/10.1016/j.arth.2010.11.011

    Article  Google Scholar 

  87. Meek RM, Allan DB, McPhillips G, Kerr L, Howie CR (2006) Epidemiology of dislocation after total hip arthroplasty. Clin Orthop Relat Res 447:9–18. https://doi.org/10.1097/01.blo.0000218754.12311.4a

    Article  CAS  PubMed  Google Scholar 

  88. Meek RM, Allan DB, McPhillips G, Kerr L, Howie CR (2008) Late dislocation after total hip arthroplasty. Clin Med Res 6(1):17–23. https://doi.org/10.3121/cmr.2008.770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Patel PD, Potts A, Froimson MI (2007) The dislocating hip arthroplasty: prevention and treatment. J Arthroplast 22(4 Suppl 1):86–90. https://doi.org/10.1016/j.arth.2006.12.111

    Article  Google Scholar 

  90. Woo RY, Morrey BF (1982) Dislocations after total hip arthroplasty. J Bone Joint Surg Am 64(9):1295–1306

    Article  CAS  Google Scholar 

  91. Callaghan JJ, Templeton JE, Liu SS, Pedersen DR, Goetz DD, Sullivan PM, Johnston RC (2004) Results of Charnley total hip arthroplasty at a minimum of thirty years. A concise follow-up of a previous report. J Bone Joint Surg Am 86-A(4):690–695

    Article  Google Scholar 

  92. Meding JB, Keating EM, Ritter MA, Faris PM, Berend ME (2004) Minimum ten-year follow-up of a straight-stemmed, plasma-sprayed, titanium-alloy, uncemented femoral component in primary total hip arthroplasty. J Bone Joint Surg Am 86-A(1):92–97

    Article  Google Scholar 

  93. Uchiyama K, Inoue G, Takahira N, Takaso M (2017) Revision total hip arthroplasty—Salvage procedures using bone allografts in Japan. J Orthop Sci 22(4):593–600. https://doi.org/10.1016/j.jos.2017.01.023

    Article  PubMed  Google Scholar 

  94. Mahomed N, Katz JN (1996) Revision total hip arthroplasty. Ind Outcomes Arthritis Rheum 39(12):1939–1950

    Article  CAS  Google Scholar 

  95. Kishimura Y, Minoda Y, Mizokawa S, Sugama R, Ohta Y, Nakamura H (2019) Cup alignment in total hip arthroplasty using the muscle-sparing modified Watson-Jones approach-comparison between lateral and supine positions. Int Orthop 43(11):2477–2483. https://doi.org/10.1007/s00264-019-04316-y

    Article  PubMed  Google Scholar 

  96. Hansen BJ, Hallows RK, Kelley SS (2011) The Rottinger approach for total hip arthroplasty: technique and review of the literature. Curr Rev Musculoskelet Med 4(3):132–138. https://doi.org/10.1007/s12178-011-9093-8

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bauer R, Kerschbaumer F, Poisel S, Oberthaler W (1979) The transgluteal approach to the hip joint. Arch Orthop Trauma Surg 95(1–2):47–49. https://doi.org/10.1007/bf00379169

    Article  CAS  PubMed  Google Scholar 

  98. Pai VS (2002) A modified direct lateral approach in total hip arthroplasty. J Orthop Surg (Hong Kong) 10(1):35–39. https://doi.org/10.1177/230949900201000107

    Article  CAS  Google Scholar 

Download references

Funding

No external source of funding was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Migliorini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migliorini, F., Trivellas, A., Eschweiler, J. et al. Nerve palsy, dislocation and revision rate among the approaches for total hip arthroplasty: a Bayesian network meta-analysis. Musculoskelet Surg 105, 1–15 (2021). https://doi.org/10.1007/s12306-020-00662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12306-020-00662-y

Keywords

Navigation