Skip to main content
Log in

Thermo-mechanical sheet metal forming of aero engine components in Ti-6Al-4V—PART 2: Constitutive modelling and validation

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In this work constitutive models suitable for thermo-mechanical forming of the titanium alloy Ti-6Al-4V are evaluated. A tool concept for thermo-mechanical forming of a double-curved sheet metal component in Ti-6Al-4V is proposed. The virtual tool design is based on finite element (FE) analyses of thermo-mechanical sheet metal forming in which two different anisotropic yield criteria are evaluated and compared with an isotropic assumption to predict global forming force, draw-in, springback and strain localisation. The shape of the yield surface has been found important and the accuracy of the predicted shape deviation could be slightly improved by including the cooling procedure. The predicted responses show promising agreement with the corresponding experimental observations when the anisotropic properties of the material are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Materials Properties Handbook: Titanium alloys, ASM International (1994), pp 483–636.

  2. Lütjering G, Williams JC (2003) Titanium. Springer-Verlag Berlin, Heidelberg

    Book  Google Scholar 

  3. Semiatin SL, Seetharaman V, Weiss I (1998) Mater Sci Eng, A A243:1–24

    Google Scholar 

  4. Ding R, Guo ZX, Wilson A (2002) Mater Sci Eng, A 327:233–245

    Article  Google Scholar 

  5. Follansbee PS, Grey GT III (1989) An analysis of the low temperature, low and high strain. Rate deformation of Ti-6Al-4V. Metall Trans A 20A(5):863–874

    Google Scholar 

  6. Nemat-Nasser S, Guo W-G, Nesterenko VF, Indrakanti S, Gu Y-B (2001) Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: Experiments and modeling. Mech Mater 33(8):425–439, ISSN: 0167–6636

    Article  Google Scholar 

  7. Picu RC, Majorell A (2002) Mechanical behaviour of Ti-6Al-4V at high and moderate temperatures—Part II: constitutive modelling. Mater Sci Eng A326:306–316

    Google Scholar 

  8. Lee WS, Lin MT (1997) The effects of strain rate and temperature on the compressive deformation behavior of Ti-6Al-4V alloy. J Mater Proc Tech 71:235–246

    Article  Google Scholar 

  9. Khan AS, Suh YS, Kazmi R (2004) Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. Int J Plast V20:2233–2248

    Article  Google Scholar 

  10. Khan AS, Kazmi R, Farrokh B (2007) Multiaxial and non-proportional loading responses, anisotropy and modelling of Ti-6Al-4V titanium alloy over a wide ranges of strain rates and temperatures. Int J Plast V23:931–950

    Article  Google Scholar 

  11. Ding R, Guo ZX, Qian M (2007) Computation Materials Science 40:201–212

    Article  MathSciNet  Google Scholar 

  12. Wagoner AJ, Bull CW, Kumar KS, Briant CL (2003) Metallurgical and Materials Transactions A 34(2):295–306

    Article  Google Scholar 

  13. Lee W-S, Lin M-T (1997) J Mater Process Technol 71(2):235–246

    Article  Google Scholar 

  14. Semiatin SL, Bieler TR (2001) Metallurgical and Materials Transactions A 32(7):1787–1799

    Article  Google Scholar 

  15. Hill R (1950) The mathematical theory of plasticity. Clarendon, Oxford

    MATH  Google Scholar 

  16. Jansson M, Nilsson L, Simonsson K (2005) On constitutive modelling of aluminium alloys for tube hydroforming applications. Int J Placticity 21:1041–1058

    Article  MATH  Google Scholar 

  17. Lademo OG, Hopperstad OS, Langset M (1999) An evaluation of yield criteria and flow rules for aluminium alloys. Int J Plasticity 15:191–208

    Article  MATH  Google Scholar 

  18. Barlat F, Lian J (1989) Plasticity behaviour and strechability of sheet metals Part I: a yield function for orthotropic sheets under plane stress condition. Int J Plasticity 5:51–66

    Article  Google Scholar 

  19. Hosford W (1979) On the yield loci of anisotropic cubic metals. 7th North American Metalworking Conf. SME, Dearborn, MI, pp 191–197

  20. Barlat F, Brem JC, Yoon J, Chung WK, Dick RE, Lege DJ, Pourboghrat F, Choi S-H, Shu E (2003) Plane stress yield function for aluminium alloy sheet—Part1: Theory. Int J Plasticity 19:1297–1319

    Article  MATH  Google Scholar 

  21. Barlat F, Aretz JCH, Yoon W, Karabin K, Breem ME, Dick RE (2005) Linear transformation-based anisotropic yield functions. Int J Plasticity 21:1009–1039

    Article  MATH  Google Scholar 

  22. Cazacu O, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plasticity 22:1171–1194

    Article  MATH  Google Scholar 

  23. Hamilton CH (1989) Superplacticity and superplastic forming. TMS-AIME, Warrendale

    Google Scholar 

  24. Materials Properties Handbook: Titanium alloys (1994) ASM International, pp 483–636

  25. Kong TF, Chan LC, Lee TC (2008) Numerical and experimental investigation of preform design in non-axisymmetrical warm forming. Int J Adv Manuf Technol 37:908–919

    Article  Google Scholar 

  26. Lai CP, Chan LC, Chow CL (2007) Effects of tooling temperature on formability of titanium TWBs at elevated temperatures. J Materials Processing Technology 191:157–160

    Article  Google Scholar 

  27. Lai CP, Chan LC, Chow CL (2007) Warm forming simulation of titanium tailor-welded blanks with experimental verification, CP908, NIMIFORM ’07. Materials Processing and Design, Simulation and Applications, pp 1621–1626

    Google Scholar 

  28. Chen F-K, Chiu K-H (2005) Stamping formability of pure titanium sheets. J Mat Proc Tech 170:181–186

    Article  Google Scholar 

  29. Satoh J, Gotoh M, Maeda Y (2003) Stretch-drawing of titanium sheets. Journal of Materials Processing Technology, v 139, n 1–3 SPEC, Aug 20, pp 201–207, ISSN: 0924–0136

  30. Shipton MH, Roberts WT (1991) Hot deep drawing of titanium sheet. Mater Sci Technol 7(6):537–540, ISSN: 0267–0836

    Article  Google Scholar 

  31. Odenberger E-L, Hertzman J, Thilderkvist P, Merklein M, Kuppert A, Stöhr T, Lechler J and Oldenburg M (2012) Thermo-mechanical sheet metal forming of aero engine components in Ti-6Al-4V—PART 1: Material characterisation. Int. Journal of Material Forming. doi:10.1007/s12289-012-1093-8

  32. Odenberger E-L, Jansson M, Thilderkvist P, Gustavsson H, Oldenburg M (2008) A short lead time methodology for design, compensation and manufacturing of deep drawing tools for Inconel 718, IDDRG 2008 Conference, Best in Class Stamping, pp 697–708

  33. Odenberger E-L, Oldenburg M, Thilderkvist P, Stoehr T, Lechler J, Merklein M (2011) Tool development based on modeling and simulation of hot sheet metal forming of Ti-6Al-4V titanium alloy. J Mater Process Technol 211:1324–1335

    Article  Google Scholar 

  34. Hansson P (2006) TOOLOX—The Multi-purpose Pre-hardened Tool Steels, 2nd International Conference on Accuracy in Forming Technology ICAFT, pp 183–200

  35. Cleveland RM, Ghosh AK (2002) Inelastic effects on springback in metals. Int J Plast 18:769–785

    Article  MATH  Google Scholar 

  36. Eggertsen P-A, Mattiasson K (2010) On constitutive modeling for springback analysis. Int J Mech Sci 52:804–818

    Article  Google Scholar 

  37. Vrh M, Halilovič M, Štok B (2011) The evolution of effective elastic properties of a cold formed stainless steel sheet. Exp Mech 51:677–695

    Article  Google Scholar 

  38. Hallquist JO (2006) “LS-DYNA Theory Manual” Livermore Software Technology Corporation, Livermore

  39. LS-DYNA Keyword User’s Manual (2007) Volume 1, v971, Livermore Software Technology Corporation, Livermore

  40. Friedman PA, Pan J (2000) Effects of plastic anisotropy and yield criteria on prediction of forming limits. Int J Mechanical Science 42:29–48

    Article  MATH  Google Scholar 

  41. Sigvant M, Mattiasson K, Larsson M (2008) The definition of incipient necking and its impact on experimentally or theoretically determined forming limit curves, IDDRG 2008 Conference. Olofström, Sweden, pp 207–218

    Google Scholar 

Download references

Acknowledgements

The research funding by VINNOVA (grant 2009–01365) and Volvo Aero Corporation, Engineering Research Nordic AB, concerned staff at ITE Fabriks AB and Industrial Development Centre in Olofström AB are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.-L. Odenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odenberger, EL., Schill, M. & Oldenburg, M. Thermo-mechanical sheet metal forming of aero engine components in Ti-6Al-4V—PART 2: Constitutive modelling and validation. Int J Mater Form 6, 403–416 (2013). https://doi.org/10.1007/s12289-012-1094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-012-1094-7

Keywords

Navigation