Skip to main content
Log in

Genomic and physiological analysis of C50 carotenoid-producing novel Halorubrum ruber sp. nov.

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A novel haloarchaeal species designated as MBLA0099T was isolated from seawater near Yeongheung Island. Cells were Gram-negative, non-motile, red-pigmented, and rod-shaped. They grew at 10–45°C, within pH 5.5–9.0, and between 7.5% and 30% NaCl concentrations. Cells were able to grow without Mg2+ and were lysed in distilled water. The size of the whole-genome and G + C content of DNA was 3.02 Mb and 68.9 mol%, respectively. Phylogenetic analysis shows that the strain MBLA0099T belongs to the genus Halorubrum. The average nucleotide and amino acid identity, and in silico DNA-DNA hybridization values were below the species delineation threshold. Pan-genomic analysis revealed that 3.2% of all genes present in strain MBLA0099T were unique to the strain. The red carotenoid produced by strain MBLA0099T was subjected to spectrometric and chromatographic analyses and confirmed to be bacterioruberin as C50 carotenoid. Mevalonic acid, terpenoid backbone, and carotenoid biosynthesis pathway were annotated for strain MBLA0099T. The C50 carotenoid production by strain MBLA0099T was also enhanced under various stress conditions including relatively netural pH, high oxidative and salinity conditions. Additionally, the strain MBLA0099T-derived bacterioruberin showed the antioxidant activity with EC50 value of 12.29 µg/ml, based on the evaluation of DPPH free radical scavenging activity. The present study would be the first report on the identification of C50 carotenoid from the strain MBLA0099T representing a novel species of the genus Halorubrum, for which the name Halorubrum ruber sp. nov. is proposed. The typestrain used was MBLA0099T (= KCTC 4296T = JCM 34701T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvares, J.J. and Furtado, I.J. 2021. Characterization of multicomponent antioxidants from Haloferax alexandrinus GUSF-1 (KF-796625). 3 Biotech 11, 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Balouiri, M., Sadiki, M., and Ibnsouda, S.K. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6, 71–79.

    Article  PubMed  Google Scholar 

  • Bauer, A.W., Kirby, M.M., Sherris, J.C., and Truck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496.

    Article  CAS  PubMed  Google Scholar 

  • Benson, H.J. 2002. Microbiological Applications: laboratory manual in general microbiology, 8th edn., pp. 432. McGraw-Hill, New York, USA.

    Google Scholar 

  • Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S.Y., Medema, M.H., and Weber, T. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britton, G. 1995. UV/Visible Spectroscopy. In Britton, G., Liaaen-Jensen, S., and Pfander, H. (eds.), Carotenoids, vol. 1B. Birkhäuser Verlag, Basel, Switzerland.

    Google Scholar 

  • Burns, D.G., Janssen, P.H., Itoh, T., Minegishi, H., Usami, R., Kamekura, M., and Dyall-Smith, M.L. 2010. Natronomonas moolapensis sp. nov., non-alkaliphilic isolates recovered from a solar saltern crystallizer pond, and emended description of the genus Natronomonas. Int. J. Syst. Evol. Microbiol. 60, 1173–1176.

    Article  CAS  PubMed  Google Scholar 

  • Capes, M.D., DasSarma, P., and DasSarma, S. 2012. The core and unique proteins of haloarchaea. BMC Genomics 13, 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhari, N.M., Gupta, V.K., and Dutta, C. 2016. BPGA- an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6, 24373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., and Jin, Q. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 33, D325–D328.

    Article  CAS  PubMed  Google Scholar 

  • Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–563.

    Article  CAS  PubMed  Google Scholar 

  • Chintong, S., Phatvej, W., Rerk-Am, U., Waiprib, Y., and Klaypracit, W. 2019. In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants 8, 128.

    Article  CAS  PubMed Central  Google Scholar 

  • Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D.R., da Costa, M.S., Rooney, A.P., Yi, H., Xu, X.W., De Meyer, S., et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68, 461–461.

    Article  CAS  PubMed  Google Scholar 

  • Cui, H.L., Zhou, P.J., Oren, A., and Liu, S.J. 2009. Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 13, 31–31.

    Article  CAS  PubMed  Google Scholar 

  • DasSarma, S. and DasSarma, P. 2017, Halophiles. In eLS, John Wiley & Sons, New Jersey, USA.

    Google Scholar 

  • Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, C.J., Ku, K.L., Lee, M.H., and Su, N.W. 2010. Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Bioresour. Technol. 101, 6487–6487.

    Article  CAS  PubMed  Google Scholar 

  • Fariq, A., Yasmin, A., and Jamil, M. 2019. Production, characterization and antimicrobial activities of bio-pigments by Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 isolated from Khewra Salt Range, Pakistan. Extremophiles 23, 435–435.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J., Zhou, P.J., and Liu, S.J. 2004. Halorubrum xinjiangense sp. nov., a novel halophile isolated from saline lakes in China. Int. J. Syst. Evol. Microbiol. 54, 1789–1789.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–368.

    Article  CAS  PubMed  Google Scholar 

  • Flores, N., Hoyos, S., Venega, M., Galetović, A., Zúñiga, L.M., Fábrega, F., Paredes, B., Salazar-Ardiles, C., Vilo, C., Ascaso, C., et al. 2020. Haloterrigena sp. strain SGH1, a bacterioruberin-rich, perchlorate-tolerant halophilic archaeon isolated from halite microbial communities, Atacama Desert, Chile. Front. Microbiol. 11, 324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forján, E., Navarro, F., Cuaresma, M., Vaquero, I., Ruíz-Domínguez, M.C., Gojkovic, Ž., Vázquez, M., Márquez, M., Mogedas, B., Bermejo, E., et al. 2015. Microalgae: fast-growth sustainable green factories. Crit. Rev. Environ. Sci. Technol. 45, 1705–1705.

    Article  Google Scholar 

  • Fullmer, M.S., Soucy, S.M., Swithers, K.S., Makkay, A.M., Wheeler, R., Ventosa A., Gogarten, J.P., and Papke, R.T. 2014. Population and genomic analysis of the genus Halorubrum. Front. Microbiol. 5, 140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giani, M., Garbayo, I., Vílchez, C., and Martínez-Espinosa, R.M. 2019. Haloarchaeal carotenoids: healthy novel compounds from extreme environments. Mar. Drugs 17, 524.

    Article  CAS  PubMed Central  Google Scholar 

  • Giani, M. and Martínez-Espinosa, R.M. 2020. Carotenoid as a protection mechanism against oxidative stress in Haloferax mediterranei. Antioxidant 9, 1060.

    Article  CAS  Google Scholar 

  • Giani, M., Miralles-Robledillo, J.M., Peiró, G., Pire, C., and Martinez-Espinosa, R.M. 2020. Deciphering pathway for carotenogenesis in haloarchaea. Molecules 25, 1197.

    Article  CAS  PubMed Central  Google Scholar 

  • Gibtan, A., Song, H.S., Kim, J.Y., Kim, Y.B., Park, N., Park, K., Lee, S.J., Kwon, J.K., Roh, S.W., and Lee, H.S. 2018. Halorubrum aethiopicum sp. nov., an extremely halophilic archaeon isolated from commercial rock salt. Int. J. Syst. Evol. Microbiol. 68, 416–416.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, C., Gutierrez C., and Ramirez, C. 1978. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 24, 710–710.

    Article  CAS  PubMed  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–95.

    CAS  Google Scholar 

  • Holding, A. and Collee, J. 1971. Chapter I Routine biochemical tests. Methods Microbiol. 6, 1–1.

    Article  Google Scholar 

  • Hou, J. and Cui, H.L. 2018. In vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from halophilic archaea. Curr. Microbiol. 75, 266–266.

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Cepas, J., Forslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering, C., and Bork, P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J., et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314.

    Article  CAS  PubMed  Google Scholar 

  • Kamekura, M., Dyall-smith, M.L., Upasani, V., Ventosa, A., and Kates, M. 1997. Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronoba cteriummagadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 47, 853–853.

    CAS  Google Scholar 

  • Kanehisa, M. and Goto, S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpiński, T. and Adamczak, A. 2019. Fucoxanthin — an antibacterial carotenoid. Antioxidants 8, 239.

    Article  PubMed Central  Google Scholar 

  • Kellermann, M.Y., Yoshinaga, M.Y., Valentine, R.C., Wörmer, L., and Valentine, D.L. 2016. Important roles for membrane lipids in haloarchaeal bioenergetics. Biochim. Biophys. Acta Biomembr. 1858, 2940–2940.

    Article  CAS  Google Scholar 

  • Kharroub, K., Quesada, T., Ferrer, R., Fuentes, S., Aguilera, M., Boulahrouf, A., Ramos-Cormenzana, A., and Monteoliva-Sánchez, M. 2006. Halorubrum ezzemoulense sp. nov., a halophilic archaeon isolated from Ezzemoul sabkha, Algeria. Int. J. Syst. Evol. Microbiol. 56, 1583–1583.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D., Park, S., and Chun, J. 2021. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J. Microbiol. 59, 476–476.

    Article  PubMed  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–111.

    Article  CAS  PubMed  Google Scholar 

  • Kluge, A.G. and Farris, J.S. 1969. Quantitative phyletics and the evolution of anurans. Syst. Biol. 18, 1–1.

    Article  Google Scholar 

  • Konstantinidis, K.T. and Tiedje J.M. 2005. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapenda, J.C., Silva, P.A., Vicalvi, M.C., Sena, K.X.F.R., and Nascimento, S.C. 2015. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World J. Microbiol. Biotechnol. 31, 399–399.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I., Kim, Y.O., Park, S.C., and Chun, J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1100.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I., Chalita, M., Ha, S.M., Na, S.I., Yoon, S.H., and Chun, J. 2017. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol, 67, 2053–2053.

    Article  CAS  PubMed  Google Scholar 

  • Liaaen-Jensen, S., Hertzberg, S., Weeks, O.B., and Schwieter, U. 1968. Bacterial carotenoids XXVII. C50-carotenoids. 3. Structure determination of dehydrogenans-P439. Acta Chem. Scand. 22, 1171–1171.

    Article  CAS  PubMed  Google Scholar 

  • McGenity, T.J. and Grant, W.D. 1995. Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst. Appl. Microbiol. 18, 237–237.

    Article  Google Scholar 

  • McGenity, T.J. and Grant, W.D. 2015. Halorubrum. In Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., and Whitman, W.B. (ed), Bergey’s Manual of Systematics of Archaea and Bacteria, 2nd edn. John Wiley & Sons, New Jersey, USA.

    Google Scholar 

  • Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Göker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., and Goodfellow, M. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods. 2, 233–233.

    Article  CAS  Google Scholar 

  • Montero-Lobato, Z., Ramos-Merchanete, A., Fuentes, J.L., Sayago, A., Fernández-Recamales, Á., Martínez-Espinosa, R.M., Vega, J.M., Vílchez, C., and Garbayo, I. 2018. Optimization of growth and carotenoid production by Haloferax mediterranei using response surface methodology. Mar. Drugs 16, 372.

    Article  CAS  PubMed Central  Google Scholar 

  • Nakano, T. and Wiegertjes, G. 2020. Properties of carotenoids in fish fitness: a review. Mar. Drugs 18, 568.

    Article  CAS  PubMed Central  Google Scholar 

  • Oren, A. and Rodríguez-Valera, F. 2001. The contribution of halophilic Bacteria to the red coloration of saltern crystallizer ponds1. FEMS Microbiol. Ecol. 36, 123–123.

    CAS  PubMed  Google Scholar 

  • Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S.V.V., Ghosh, T., Dubey, S., and Mishra, S. 2017. Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol. 244, 1216–1216.

    Article  CAS  PubMed  Google Scholar 

  • Pesenti, P.T., Sikaroodi, N., Gillevet, P.M., Sánchez-Porro, C., Ventosa, A., and Litchfield, C.D. 2008. Halorubrum californiense sp. nov., an extreme archaeal halophile isolated from a crystallizer pond at a solar salt plant in California, USA. Int. J. Syst. Evol. Microbiol. 58, 2710–2710.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–406.

    CAS  PubMed  Google Scholar 

  • Serrano, S., Mendo, S., and Caetano, T. 2021. Haloarchaea have a high genomic diversity for the biosynthesis of carotenoids of biotechnological interest. Res. Microbiol. 20, 103919.

    Google Scholar 

  • Shahmohammadi, H.R., Asgarani, E., Terato, H., Saito, T., Ohyama, Y., Gekko, K., Yamamoto, O., and Ide, H. 1998. Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J. Radiat. Res. 39, 251–251.

    Article  CAS  PubMed  Google Scholar 

  • Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization. In Gerhart, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.) Methods for General and Molecular Bacteriology, pp. 607–654. American Society for Microbiology, Washington DC, USA.

    Google Scholar 

  • Thombre, R.S., Shinde, V.D., Oke, R.S., Dhar, S.K., and Shouche, Y.S. 2016. Biology and survival of extremely halophilic archaeon Haloarcula marismortui RR12 isolated from Mumbai salterns, India in response to salinity stress. Sci. Rep. 6, 25642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31, 575–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventosa, M., Gutiérrez, M.C., Kamekura, M., Zvyagintseva, I.S., and Oren, A. 2004. Taxonomic study of Halorubrum distributum and proposal of Halorubrum terrestre sp. nov. Int. J. Syst. Evol. Microbiol. 54, 389–389.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Yatsunami, R., Ando, A., Miyoko, N., Fukui, T., Takaichi, S., and Nakamura, S. 2015. Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J. Bacteriol. 197, 1614–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatsunami, R., Ando, A., Yang, Y., Takaichi, S., Kohno, M., Matsumura, Y., Ikeda, H., Fukui, T., Nakasone, K., Fujita, N., et al. 2014. Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front. Microbiol. 5, 100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Wu, J., Yang, J., Sun, S., Xiao, J., and Yu, J. 2012. PGAP: pangenomes analysis pipeline. Bioinformatics 28, 416–416.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Incheon National University Research Grant in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Ji Seo.

Additional information

Conflict of Interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, C.Y., Cho, ES., Rhee, W.J. et al. Genomic and physiological analysis of C50 carotenoid-producing novel Halorubrum ruber sp. nov.. J Microbiol. 60, 1007–1020 (2022). https://doi.org/10.1007/s12275-022-2173-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2173-1

Keywords

Navigation