Skip to main content
Log in

Characterization of multicomponent antioxidants from  Haloferax alexandrinus GUSF-1 (KF796625)

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present study was aimed to exploit the haloarchaeon Haloferax alexandrinus GUSF-1 (KF796625) for the presence of biomolecules possessing antioxidant activity. The culture produced a bright orange pigment when grown aerobically in nutrient rich medium with 25% crude solar salt. Biomolecules from cell-free supernatant and from the cells of the culture were individually extracted through the assistance of solvents of different polarities, such as ethanol, methanol and hexane, and monitored for scavenging of stable free radicals. Each of the extracts showed varying capacities to scavenge DPPH(20, 31, and 80% DPPH RSA; 160.19, 248.29 and 640.76 AAE µg g−1 of cells) at 1 mg mL−1. The extracellular ethanolic extract was polysaccharide in nature, equivalent to 47 µg mL−1 of glucose when assayed with the phenol-sulfuric acid method. The Fourier Transform-Infra Red spectroscopy confirmed the characteristic glycosidic peaks between 2000 and 1000 cm−1. Similarly, the glycerol diether moiety separated from hydroxylated methanolysates through thin-layer chromatography scavenged free radicals (10.47% DPPH RSA; 80.03 AAE µg g−1 of cells). Further, the hexanolic extract exhibited spectral characteristics of red carotenoids and resolved into distinct compounds when separated by thin-layer chromatography using different developing systems. All separated compounds were positive for the DPPH reaction (13–30% DPPH RSA; 100–240 AAE µg g−1). Chemical profiling of the hexanolic extract using the high resolution-liquid chromatography–mass spectroscopy–diode array detector analysis confirmed the presence of different carbon length isoprenoids; C30: tetrahydrosqualene, C40: 3-hydroxyechinenone, astaxanthin, canthaxanthin, lycopene, phytofluene, phytoene and C50: bisanhydrobacterioruberin, monoanhydrobacterioruberin, bacterioruberin and haloxanthin. Thus, we conclude that the synergistic actions of all these components contribute to the antioxidant activity of the culture and that the antioxidant activity of the exopolysaccharide, glycerol dither moiety, tetrahydrosqualene, haloxanthin and 3-hydroxyechinenone is recorded as the first report for Haloferax alexandrinus GUSF-1 (KF796625). Therefore, recommended for use in microbial industrial biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An GH, Schuman DB, Johnson EA (1989) Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl Environ Microbiol 55(1):116–124

    Article  CAS  Google Scholar 

  • Alvares JJ, Furtado IJ (2018) Extremely halophilic Archaea and Eubacteria are responsible for free radical scavenging activity of solar salts of Goa-India. Global J Biosci Biotechnol 7(2):242–254

    Google Scholar 

  • Antón J, Meseguer I, Rodríguez-Valera F (1988) Production of an extracellular polysaccharide by Haloferax mediterranei. Appl Environ Microbiol 54(10):2381–2386

    Article  Google Scholar 

  • Asker D, Awad T, Ohta Y (2002) Lipids of Haloferax alexandrinus Strain TMT: an extremely halophilic canthaxanthin producing archaeon. J Biosci Bioeng 93(1):37–43

    Article  CAS  Google Scholar 

  • Braganca JM, Furtado I (2009) Isolation and characterisation of haloarchaea from low- salinity coastal sediments and waters of Goa. Curr Sci 96:1182–1184

    CAS  Google Scholar 

  • Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1B. Birkhäuser. Basel, Switzerland, pp 13–62

    Google Scholar 

  • Del Gallo M, Haegi A (1990) Characterization and quantification of exocellular polysaccharides in Azospirillum brasilense and Azospirillum lipoferum. Symbiosis 9:155–161

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Gaonkar SK, Furtado IJ (2018) Isolation and culturing of protease and lipase producing Halococcus agarilyticus GUGFAWS-3 from marine Haliclona sp. inhabiting the rocky intertidal region of Anjuna in Goa, India. Ann Microbiol 68:851–861

    Article  CAS  Google Scholar 

  • Kushwaha SC, Gochnauer MB, Kushner DJ, Kates M (1974) Pigments and isoprenoid compounds in extremely and moderately halophilic bacteria. Can J Microbiol 20:241–245

    Article  CAS  Google Scholar 

  • Lu JM, Lin PH, Yao Q, Chen C (2010) Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mod Med 14:840–860

    Article  CAS  Google Scholar 

  • Malik AD, Furtado IJ (2019) Haloferax sulfurifontis GUMFAZ2 producing xylanase‐free cellulase retrieved from Haliclona sp. inhabiting rocky shore of Anjuna, Goa‐India. J Basic Microbiol 59:692–700

  • Naik S, Furtado I (2019) Formation of Rhodochrosite by Haloferax alexandrinus GUSF-1. J Clust Sci 30:1435–1441

    Article  Google Scholar 

  • Patil S, Fernandes J, Tangsali RB, Furtado I (2014) Exploitation of Haloferax alexandrinus for biogenic synthesis of silver nanoparticles antagonistic to human and lower mammalian pathogens. J Clust Sci 25:423–433

    Article  CAS  Google Scholar 

  • Raghavan TM, Furtado I (2000) Tolerance of an estuarine halophilic archaebacterium to crude oil and constituent hydrocarbons. Bull Environ Contam Toxicol 65:725–731

    Article  CAS  Google Scholar 

  • Raghavan TM, Furtado I (2005) Expression of carotenoid pigments of haloarchaeal cultures exposed to aniline. Environ Toxicol 20:165–169

    Article  CAS  Google Scholar 

  • Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM (2015) Carotenoids from Haloarchaea and their potential in biotechnology. Mar Drugs 13:5508–5532

    Article  Google Scholar 

  • Ronnekleiv M, Liaaen-Jensen S (1995) Bacterial carotenoids. 53, C50-carotenoids 23; Carotenoids of Haloferax volcanii versus other halophilic bacteria. Biochem Syst Ecol 23:627–734

    Article  CAS  Google Scholar 

  • Ross HNM, Collins MD, Tindall BJ, Grant WD (1981) A rapid procedure for the detection of archaebacterial lipids in halophilic bacteria. J Gen Microbiol 123:75–80

    CAS  Google Scholar 

  • Ross HNM, Grant WD, Harris JE (1985) Lipids in archaebacterial taxonomy. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Society for Applied Bacteriology Technical Series 20. Academic Press, London, pp 289–300

    Google Scholar 

  • Sequeira F (1992) Microbiological study of salt pans of Goa. M.Sc. Dissertation, Goa University. Goa, India

  • Singh A, Singh AK (2017) Haloarchaea: worth exploring for their biotechnological potential. Biotechnol Lett 39:1793–1800

    Article  CAS  Google Scholar 

  • Squillaci G, Finamore R, Diana P, Restaino OF, Schiraldi C, Arbucci S, Ionata E, La Cara F, Morana A (2016) Production and properties of an exopolysaccharide synthesized by the extreme halophilic archaeon Haloterrigena turkmenica. Appl Microbiol Biotechnol 100:613–623

    Article  CAS  Google Scholar 

  • Squillaci G, Parrella R, Carbone V, Minasi P, La Cara F, Morana A (2017) Carotenoids from the extreme halophilic archaeon Haloterrigena turkmenica: identification and antioxidant activity. Extremophiles 21:933–945

    Article  CAS  Google Scholar 

  • Tornabene TG, Kates M, Gelpi E, Oro J (1969) Occurrence of squalene, di and tetrahydrosqualenes, and vitamin MK8 in an extremely halophilic bacterium, Halobacterium cutirubrum. J Lipid Res 10:294–303

    Article  CAS  Google Scholar 

  • Utkina NK, Makarchenko AE, Shchelokova OV, Virovaya MV (2004) Antioxidant activity of phenolic metabolites from marine sponges. Chem Nat Comp 403:373–377

    Article  Google Scholar 

  • Velho Pereira S, Furtado I (2014) Retrieval of euryhaline eubacterial and haloarchaeal bionts from nine different benthic sponges: reflection of the bacteriological health of waters of Mandapam, India. Indian J Mar Sci 43:773–783

  • Velho Pereira S, Parvatkar P, Furtado I (2015) Evaluation of antioxidant producing potential of halophilic bacterial bionts from marine invertebrates. Indian J Pharm Sci 77:183–189

    Article  CAS  Google Scholar 

  • Wan MY, Dong G, Yang BQ, Feng H (2016) Identification and characterization of a novel antioxidant peptide from feather keratin hydrolysate. Biotechnol Lett 38:643–649

    Article  CAS  Google Scholar 

  • Warren CK, Weedon BCL (1958) Carotenoids and related compounds. Part VII. Synthesis of canthaxanthin and echinenone. J Chem Soc 3986–3993

  • Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S, Nakamura S (2015) Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J Bacteriol 197:1614–1623

    Article  CAS  Google Scholar 

  • Zhang Y, Lu X, Fu Z, Wang Z, Zhang J (2011) Sulfated modification of a polysaccharide obtained from fresh persimmon (Diospyros kaki L.) fruit and antioxidant activities of the sulfated derivatives. Food Chem 127:1084–1090

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank IIT-Bombay, India, for the HR-LC/MS–DAD analysis and Department of Chemistry, Goa University, India, for the FTIR analysis.

Author information

Authors and Affiliations

Authors

Contributions

Author IJ Furtado designed the experiments, analyzed the observations, and formulated the MS along with JJ Alvares who alone carried out all the experimental benchwork.

Corresponding author

Correspondence to Irene Jeronimo Furtado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is dedicated to Corresponding Author’s mother, Berta Faleiro Furtado and to Co-author’s father, Philip John Alvares.

Haloferax alexandrinus GUSF-1 (GenBank accession number KF796625). Gen bank: http://www.ncbi.nlm.nih.gov.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvares, J.J., Furtado, I.J. Characterization of multicomponent antioxidants from  Haloferax alexandrinus GUSF-1 (KF796625). 3 Biotech 11, 58 (2021). https://doi.org/10.1007/s13205-020-02584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02584-9

Keywords

Navigation