Skip to main content
Log in

Improved tolerance of recombinant Chlamydomonas rainhardtii with putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pyropia yezoensis to nitrogen starvation

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In a previous study, a putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD) was highly expressed in a mutant strain of Pyropia yezoensis, which exhibited an improved growth rate compared to its wild strain. To investigate the functional role of the putative ACMSD (Pyacmsd) of P. yezoensis, the putative Pyacmsd was cloned and expressed in Chlamydomonas reinhardtii. Recombinant C. reinhardtii cells with Pyacmsd (Cr_Pyacmsd) exhibited enhanced tolerance compared to control C. reinhardtii cells (Cr_control) under nitrogen starvation. Notably, Cr_Pyacmsd cells showed accumulation of lipids in nitrogen-enriched conditions. These results demonstrate the role of Pyacmsd in the generation of acetyl-coenzyme A. Thus, it can be used to enhance the production of biofuel using microalgae such as C. reinhardtii and increase the tolerance of other biological systems to nitrogen-deficient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bristow, L.A., Mohr, W., Ahmerkamp, S., and Kuypers, M.M. 2017. Nutrients that limit growth in the ocean. Curr. Biol. 27, R474–R478.

    Article  CAS  Google Scholar 

  • Cirulis, J.T., Strasser, B.C., Scott, J.A., and Ross, G.M. 2012. Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry A 81, 618–626.

    Article  Google Scholar 

  • de Lomana, A.L.G., Schäuble, S., Valenzuela, J., Imam, S., Carter, W., Bilgin, D.D., Yohn, C.B., Turkarslan, S., Reiss, D.J., Orellana, M.V., et al. 2015. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii. Biotechnol. Biofuels 8, 207.

    Article  Google Scholar 

  • Garavaglia, S., Perozzi, S., Galeazzi, L., Raffaelli, N., and Rizzi, M. 2009. The crystal structure of human α-amino-β-carboxymuco-nate-s-semialdehyde decarboxylase in complex with 1, 3-dihydroxyacetonephosphate suggests a regulatory link between NAD synthesis and glycolysis. FEBS J. 276, 6615–6623.

    Article  CAS  Google Scholar 

  • Huo, L., Fielding, A.J., Chen, Y., Li, T., Iwaki, H., Hosler, J.P., Chen, L., Hasegawa, Y., Que, L.Jr., and Liu, A. 2012. Evidence for a dual role of an active site histidine in α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase. Biochemistry 51, 5811–5821.

    Article  CAS  Google Scholar 

  • Huo, L., Liu, F., Iwaki, H., Li, T., Hasegawa, Y., and Liu, A. 2015. Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD): a structural and mechanistic unveiling. Proteins 83, 178–187.

    Article  CAS  Google Scholar 

  • Im, S., Choi, S., Hwang, M.S., Park, E.J., Jeong, W.J., and Choi, D.W. 2015. De novo assembly of transcriptome from the gametophyte of the marine red algae Pyropia seriata and identification of abiotic stress response genes. J. Appl. Phycol. 27, 1343–1353.

    Article  CAS  Google Scholar 

  • Jeong, B., Wu-Scharf, D., Zhang, C., and Cerutti, H. 2002. Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc. Natl. Acad. Sci. USA 99, 1076–1081.

    Article  CAS  Google Scholar 

  • Kamalanathan, M., Pierangelini, M., Shearman, L.A., Gleadow, R., and Beardall, J. 2016. Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J. Appl. Phycol. 28, 1509–1520.

    Article  CAS  Google Scholar 

  • Katsyuba, E., Mottis, A., Zietak, M., De Franco, F., van der Velpen, V., Gariani, K., Ryu, D., Cialabrini, L., Matilainen, O., Liscio, P., et al. 2018. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 563, 354–359.

    Article  CAS  Google Scholar 

  • Kong, F., Cao, M., Sun, P., Liu, W., and Mao, Y. 2015. Selection of reference genes for gene expression normalization in Pyropia yezoensis using quantitative real-time PCR. J. Appl. Phycol. 27, 1003–1010.

    Article  CAS  Google Scholar 

  • Li, T., Iwaki, H., Fu, R., Hasegawa, Y., Zhang, H., and Liu, A. 2006. β-Amino-β-carboxymuconic-ε-semialdehyde decarboxylase (ACMSD) is a new member of the amidohydrolase superfamily. Biochemistry 45, 6628–6634.

    Article  CAS  Google Scholar 

  • Li, T., Walker, A.L., Iwaki, H., Hasegawa, Y., and Liu, A. 2005. Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor. J. Am. Chem. Soc. 127, 12282–12290.

    Article  CAS  Google Scholar 

  • Lin, H., Kwan, A.L., and Dutcher, S.K. 2010. Synthesizing and salvaging NAD+: lessons learned from Chlamydomonas reinhardtii. PLoS Genet. 6, e1001105.

    Article  Google Scholar 

  • Mishra, S.K., Suh, W.I., Farooq, W., Moon, M., Shrivastav, A., Park, M.S., and Yang, J.W. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 155, 330–333.

    Article  CAS  Google Scholar 

  • Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd, P.W., Galbraith, E.D., Geider, R.J., Guieu, C., Jaccard, S.L., et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710.

    Article  CAS  Google Scholar 

  • Muraki, T., Taki, M., Hasegawa, Y., Iwaki, H., and Lau, P.C.K. 2003. Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3, 4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl. Environ. Microbiol. 69, 1564–1572.

    Article  CAS  Google Scholar 

  • Na, Y., Lee, H.N., Wi, J., Jeong, W.J., and Choi, D.W. 2018. PtDRG1, a desiccation response gene from Pyropia tenera (Rhodophyta), exhibits chaperone function and enhances abiotic stress tolerance. Mar. Biotechnol. 20, 584–593.

    Article  CAS  Google Scholar 

  • Nakamura, Y., Sasaki, N., Kobayashi, M., Ojima, N., Yasuike, M., Shigenobu, Y., Satomi, M., Fukuma, Y., Shiwaku, K., Tsujimoto, A., et al. 2013. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS ONE 8, e57122.

    Article  CAS  Google Scholar 

  • Ngan Tran, K. and Choi, J. 2020. Comparative transcriptome analysis of high-growth and wild-type strains of Pyropia yezoensis. Acta Bot. Croat. 79, 148–156.

    Article  Google Scholar 

  • Palzer, L., Bader, J.J., Angel, F., Witzel, M., Blaser, S., McNeil, A., Wandersee, M.K., Leu, N.A., Lengner, C.J., Cho, C.E., et al. 2018. Alpha-amino-beta-carboxy-muconate-semialdehyde decarboxylase controls dietary niacin requirements for NAD+ synthesis. Cell Rep. 25, 1359–1370.

    Article  CAS  Google Scholar 

  • Park, S. and Choi, J. 2020. De novo transcriptome analysis of high growth rate Pyropia yezoensis (Bangiales, Rhodophyta) mutant with high utilization of nitrogen. Acta Bot. Croat. 79, 201–211.

    Article  CAS  Google Scholar 

  • Park, J.J., Wang, H., Gargouri, M., Deshpande, R.R., Skepper, J.N., Holguin, F.O., Juergens, M.T., Shachar-Hill, Y., Hicks, L.M., and Gang, D.R. 2015. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. Plant J. 81, 611–624.

    Article  CAS  Google Scholar 

  • Rengel, R., Smith, R.T., Haslam, R.P., Sayanova, O., Vila, M., and León, R. 2018. Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. Algal Res. 31, 183–193.

    Article  Google Scholar 

  • Sartory, D.P. and Grobbelaar, J.U. 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114, 177–187.

    Article  CAS  Google Scholar 

  • Shurubor, Y.I., D’Aurelio, M., Clark-Matott, J., Isakova, E.P., Deryabina, Y.I., Beal, M.F., Cooper, A.J.L., and Krasnikov, B.F. 2017. Determination of coenzyme A and acetyl-coenzyme A in biological samples using HPLC with UV detection. Molecules 22, 1388.

    Article  Google Scholar 

  • Wan, M., Rosenberg, J.N., Faruq, J., Betenbaugh, M.J., and Xia, J. 2011. An improved colony PCR procedure for genetic screening of Chlorella and related microalgae. Biotechnol. Lett. 33, 1615–1619.

    Article  CAS  Google Scholar 

  • Yoshino, J. 2019. ACMSD: a novel target for modulating NAD+ homeostasis. Trends Endocrinol. Metab. 30, 229–232.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1D1A1B07049359), Golden Seed Project Grant funded by the Ministry of Oceans and Fisheries (213008-05-4-SB910), and the research program of Korea Atomic Energy Research Institute (KAERI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-il Choi.

Additional information

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Sj., Ahn, J.W. & Choi, Ji. Improved tolerance of recombinant Chlamydomonas rainhardtii with putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pyropia yezoensis to nitrogen starvation. J Microbiol. 60, 63–69 (2022). https://doi.org/10.1007/s12275-022-1491-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-1491-7

Keywords

Navigation