Skip to main content
Log in

The therapeutic applications of antimicrobial peptides (AMPs): a patent review

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) are small molecules with a broad spectrum of antibiotic activities against bacteria, yeasts, fungi, and viruses and cytotoxic activity on cancer cells, in addition to anti-inflammatory and immunomodulatory activities. Therefore, AMPs have garnered interest as novel therapeutic agents. Because of the rapid increase in drug-resistant pathogenic microorganisms, AMPs from synthetic and natural sources have been developed using alternative antimicrobial strategies. This article presents a broad analysis of patents referring to the therapeutic applications of AMPs since 2009. The review focuses on the universal trends in the effective design, mechanism, and biological evolution of AMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta, J., Carpio, Y., Valdes, I., Velazquez, J., Zamora, Y., Morales, R., Morales, A., Rodrí guez, E., and Estrada, M.P. 2014. Co-administration of tilapia alpha-helical antimicrobial peptides with subunit antigens boost immunogenicity in mice and tilapia (Oreochromis niloticus). Vaccine 32, 223–229.

    Article  CAS  PubMed  Google Scholar 

  • Acosta, J. and Estrada, M.P. 2013. Amino acid sequences for controlling pathogens. US20140294871 A1.

    Google Scholar 

  • Altman, S., Bothwell, A., Mamoum, C.B., and Pabst, P.L. 2013. Antimicrobial compositions and methods of use thereof. WO2013-044116 A1.

    Google Scholar 

  • Aoki, W. and Ueda, M. 2013. Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals (Basel) 6, 1055–1081.

    Article  Google Scholar 

  • Arribas, B., Garrido-Mesa, N., Peran, L., Camuesco, D., Comalada, M., Bailon, E., Olivares, M., Xaus, J., Kruidenier, L., Sanderson, I.R., et al. 2012. The immunomodulatory properties of viable Lactobacillus salivarius ssp. salivarius CECT5713 are not restricted to the large intestine. Eur. J. Nutr. 51, 365–374.

    Article  CAS  PubMed  Google Scholar 

  • Baba, M.S., Zin, N.M., Hassan, Z.A., Latip, J., Pethick, F., Hunter, I.S., Edrada-Ebel, R., and Herron, P.R. 2015. In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10. J. Microbiol. 53, 847–855.

    Article  CAS  PubMed  Google Scholar 

  • Brzoska, T., Luger, T.A., Maaser, C., Abels, C., and Bohm, M. 2008. a-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immunemediated inflammatory diseases. Endocr. Rev. 29, 581–602.

    Article  CAS  PubMed  Google Scholar 

  • Cabiaux, V., Agerberth, B., Johansson, J., Homblé, F., Goormaghtigh, E., and Ruysschaert, J.M. 1994. Secondary structure and membrane interaction of PR-39, a Pro+Arg-rich antibacterial peptide. Eur. J. Biochem. 224, 1019–1027.

    Article  CAS  PubMed  Google Scholar 

  • Casteels-Josson, K., Capaci, T., Casteels, P., and Tempst, P. 1993. Apidaecin multipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response. EMBO J. 12, 1569–1578.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H.L., Su, P.Y., Chang, Y.S., Wu, S.Y., Liao, Y.D., Yu, H.M., Lauderdale, T.L., Chang, K., and Shih, C. 2013. Identification of a novel antimicrobial peptide from human hepatitis B virus core protein arginine-rich domain (ARD). PLoS Pathog. 9, e1003425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiuchiolo, M.J., Delgado, M.A., Farias, R.N., and Salomon, R.A. 2001. Growth-phase-dependent expression of the cyclopeptide antibiotic microcin J25. J. Bacteriol. 183, 1755–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, J.J., Koeris, M., Lu, T.K.T., Chau, T.M., and Stephanopoulos, G. 2010. Bacteriophages expressing antimicrobial peptides and uses thereof. WO2010141135 A2.

    Google Scholar 

  • Conlon, J.M., Al-Ghaferi, N., Abraham, B., and Leprince, J. 2007. Strategies for transformation of naturally occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods 42, 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Cudic, M. and Otvos, L.Jr. 2002. Intracellular targets of antibacterial peptides. Curr. Drug Targets 3, 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Dipexium Pharmaceuticals. Available online: http://www.dipexiumpharmaceuticals. com (accessed on 8 August 2016).

  • Dubos, R.J. 1939. Studies on a bactericidal agent extracted from a soil Bacillus: I. preparation of the agent. Its activity in vitro. J. Exp. Med. 70, 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duquesne, S., Destoumieux-Garzon, D., Peduzzi, J., and Rebuffat, S. 2007. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24, 708–734.

    Article  CAS  PubMed  Google Scholar 

  • Eckert, R.H., Yarbrough, D.K., Shi, W., Anderson, M.H., Qi, F., He, J., and Mchardy, I.H. 2008. Selectively targeted antimicrobial peptides and the use thereof. WO2008030988 A2.

    Google Scholar 

  • Epand, R.M. and Vogel, H.J. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta 1462, 11–28.

    Article  CAS  PubMed  Google Scholar 

  • Ge, Y., MacDonald, D.L., Holroyd, K.J., Thornsberry, C., Wexler, H., and Zasloff, M. 1999. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob. Agents Chemother. 43, 782–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gidalevitz, D., Ishitsuka, Y., Muresan, A.S., Konovalov, O., Waring, A.J., Lehrer, R.I., and Lee, K.Y. 2003. Interaction of antimicrobial peptide protegrin with biomembranes. Proc. Natl. Acad. Sci. USA 100, 6302–6307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunzer, F., Zschuettig, A., and Zimmermann, K. 2013. Bacterially formed microcin s, a new antimicrobial peptide, effective against pathogenic microorganisms, e.g. enterohemorrhagic Escherichia coli (ehec). WO2013024066 A1.

    Google Scholar 

  • Hains, D., Schwaderer, A., and Wang, H. 2013. RNase 7 antimicrobial peptides. WO2013158773 A3.

    Google Scholar 

  • Haisma, E.M., de Breij, A., Chan, H., van Dissel, J.T., Drijfhout, J.W., Hiemstra, P.S., El Ghalbzouri, A., and Nibbering, P.H. 2014. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob. Agents Chemother. 58, 4411–4419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock, R.E. and Chapple, D.S. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43, 1317–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilpert, K., Mikut, R., and Ruden, S. 2013. Antimicrobial peptides for treatment of infectious diseases. WO2013053772 A1.

    Google Scholar 

  • Hoffmann, R., Berthold, N., and Nollmann, F. 2014. Modified antibiotic peptides having variable systemic release. US20140309161 A1.

    Google Scholar 

  • Hoffmann, R. and Czihal, P. 2009. Antibiotic peptides. WO2009-013262 A1.

    Google Scholar 

  • Jang, S.A., Kim, D.J., Kim, S.C., Lee, Y.W., Lim, K.J., Shin, J.R., and Sung, B.H. 2012. Novel use of antimicrobial peptides in regeneration of skin cells. WO2012046922 A1.

    Google Scholar 

  • Jenssen, H., Hamill, P., and Hancock, R.E. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Z., Hodges, R., Gera, L., and Mant, C. 2015. Dermaseptin-type and piscidin-type antimicrobial peptides. WO2015112980 A2.

    Google Scholar 

  • Jones, A.T. 2007. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. J. Cell Mol. Med. 11, 670–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H., Kim, H.R., Kim, N.R., Jeong, B.J., Lee, J.S., Jang. S., and Chung, D.K. 2015. Oral administration of Lactobacillus plantarum lysates attenuates the development of atopic dermatitis lesions in mouse models. J. Microbiol. 53, 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Ladram, A., Oury, B., Sereno, D., and Foulon, T. 2013. Analogues of temporin-SHa and uses thereof. EP 2853538 A1.

    Google Scholar 

  • Lee, C.C., Sun, Y., Qian, S., and Huang, H.W. 2011. Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys. J. 100, 1688–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehrer, R.I., Cole, A.M., and Selsted, M.E. 2012. α-Defensins: cyclic peptides with endless potential. J. Biol. Chem. 287, 27014–27019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehrer, R.I., Waring, A.J., Cole, A.M., and Hong, T.B. 2010. Retrocyclins: antiviral and antimicrobial peptides. US7718610 B2.

    Google Scholar 

  • Li, W.F., Ma, G.X., and Zhou, X.X. 2006. Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 27, 2350–2359.

    Article  CAS  PubMed  Google Scholar 

  • Luger, T.A. and Brzoska, T. 2007. α-MSH related peptides: a new class of anti-inflammatory and immunomodulating drugs. Ann. Rheum. Dis. 66, iii52–iii55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccari, G., Nifosi, R., and Di Luca, M. 2013. Rational development of antimicrobial peptides for therapeutic use: design and production of highly active compounds. In Medez-Vilas, A. (ed.), Microbial pathogens and strategies for combating them: science, technology and education, pp. 1265–1277.

  • Formatex Research Center, Badajoz, Spain. Madam Therapeutics. Available online: http://www.madam-therapeutics. com (accessed on 30 August 2016).

  • Madani, F., Lindberg, S., Langel, U., Futaki, S., and Gräslund, A. 2011. Mechanisms of cellular uptake of cell-penetrating peptides. J. Biophys. 2011, 414729.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, R., Jimenez, E., Olivares, M., Marin, M.L., Fernandez, L., Xaus, J., and Rodríguez, J.M. 2006. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int. J. Food Microbiol. 112, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Mayor, S. and Pagano, R.E. 2007. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603–612.

    Article  CAS  PubMed  Google Scholar 

  • Messaoudi, S., Manai, M., Kergourlay, G., Prévost, H., Connil, N., Chobert, J.M., and Dousset, X. 2013. Lactobacillus salivarius: bacteriocin and probiotic activity. Food Microbiol. 36, 296–304.

    Article  CAS  PubMed  Google Scholar 

  • Münk, C., Wei, G., Yang, O.O., Waring, A.J., Wang, W., Hong, T., Lehrer, R.I., Landau, N.R., and Cole, A.M. 2003. The theta-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res. Hum. Retroviruses 19, 875–881.

    Article  PubMed  Google Scholar 

  • Nibbering, P.H., Hiemstra, P., and Drijfhout, J.W. 2016. Antimicrobial peptide. US20160075749 A1.

    Google Scholar 

  • Nicolas, P. 2009. Multifunctional host defense peptides: intracellulartargeting antimicrobial peptides. FEBS J. 276, 6483–6496.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.C., Kim, M.H., Hossain, M.A., Shin, S.Y., Kim, Y., Stella, L., Wade, J.D., Park, Y., and Hahm, K.S. 2008. Amphipathic a-helical peptide, HP(2–20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions. Biochim. Biophys. Acta 1778, 229–241.

    Article  CAS  PubMed  Google Scholar 

  • Patil, S.D., Sharma, R., Bhattacharyya, T., Kumar, P., Gupta, M., Chaddha, B.S., Navani, N.K., and Pathania, R. 2015. Antibacterial potential of a small peptide from Bacillus sp. RPT-0001 and its capping for green synthesis of silver nanoparticles. J. Microbiol. 53, 643–652.

    Article  CAS  PubMed  Google Scholar 

  • Phoenix, D.A., Dennison, S.R., and Harris, F. 2013. Antimicrobial peptides: their history, evolution, and functional promiscuity, pp. 1–37. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

    Book  Google Scholar 

  • Rinaldi, A.C. 2002. Antimicrobial peptides from amphibian skin: an expanding scenario. Curr. Opin. Chem. Biol. 6, 799–804.

    Article  CAS  PubMed  Google Scholar 

  • Rollins-Smith, L.A., Reinert, L.K., O'Leary, C.J., Houston, L.E., and Woodhams, D.C. 2005. Antimicrobial peptide defenses in amphibian skin. Integr. Comp. Biol. 45, 137–142.

    Article  CAS  PubMed  Google Scholar 

  • Ross, P., O'SHEA, E., and Hill, C. 2013. Anitmicrobial peptide produced by intestinal Lactobacillus salivarius. WO2013014293 A1.

    Google Scholar 

  • Scott, M.G., Davidson, D.J., Gold, M.R., Bowdish, D., and Hancock, R.E. 2002. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 169, 3883–3891.

    Article  CAS  PubMed  Google Scholar 

  • Shih, C., Chen, H.L., and Su, P.Y. 2014. Antimicrobial peptides derived from hepatitis b virus core protein arginine-rich domain. WO2014124047 A1.

    Google Scholar 

  • Sokolov, Y., Mirzabekov, T., Martin, D.W., Lehrer, R.I., and Kagan, B.L. 1999. Membrane channel formation by antimicrobial protegrins. Biochim. Biophys. Acta 1420, 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Song, P.I., Armstrong, C., Ryu, S., Park, Y., and Hahm, K.S. 2014. Methods of use for an antimicrobial peptide. WO2014152437 A2.

    Google Scholar 

  • Song, S., Jin, L., Liu, J., and Wang, Q. 2012. Antimicrobial peptide separated from skin of Northeast China brown frog and applications in antibacterials. CN101333247 B.

    Google Scholar 

  • Song, Y., Li, T., Yu, X., and Meng, Q. 2011. Rana nigromaculata antimicrobial peptide as well as gene and application thereof. CN102250216 A.

    Google Scholar 

  • Spencer, J.D., Schwaderer, A.L., Dirosario, J.D., McHugh, K.M., McGillivary, G., Justice, S.S., Carpenter, A.R., Baker, P.B., Harder, J., and Hains, D.S. 2011. Ribonuclease 7 is a potent antimicrobial peptide within the human urinary tract. Kidney Int. 80, 174–180.

    Article  CAS  PubMed  Google Scholar 

  • Ståhle-Bäckdahl, M., Heilborn, J., Carlsson, A., and Bogentoft, C. 2011. Use of the cathelicidin LL-37 and derivatives therof for wound healing. US8012933 B2.

    Google Scholar 

  • Stange, E., Schroeder, B., and Wehkamp, J. 2015. Antimicrobial peptides. WO2013132005 A1.

    Google Scholar 

  • Steinberg, D.A., Hurst, M.A., Fujii, C.A., Kung, A.H., Ho, J.F., Cheng, F.C., Loury, D.J., and Fiddes, J.C. 1997. Protegrin-1: a broadspectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob. Agents Chemother. 41, 1738–1742.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner, H., Hultmark, D., Engström, A., Bennich, H., and Boman, H.G. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246–248.

    Article  CAS  PubMed  Google Scholar 

  • STRØM, M., Hansen, T., Havelkova, M., and TØRFOSS, V. 2011. Therapeutic peptides. WO2011051692 A1.

    Google Scholar 

  • Toke, O. 2005. Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 80, 717–735.

    Article  CAS  PubMed  Google Scholar 

  • Turner, J., Cho, Y., Dinh, N.N., Waring, A.J., and Lehrer, R.I. 1998. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother. 42, 2206–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Moskowitz, H., Liu, X., Roczniak, S.O., and Bossard, M.J. 2011. Polymer conjugates of protegrin peptides. US20110171161 A1.

    Google Scholar 

  • Wang, H., Schwaderer, A.L., Kline, J., Spencer, J.D., Kline, D., and Hains, D.S. 2013. Contribution of structural domains to the activity of ribonuclease 7 against uropathogenic bacteria. Antimicrob. Agents Chemother. 57, 766–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willcox, M.D.P., Kumar, N., Cole, N., and Chen, R. 2013. Antimicrobial peptides and uses thereof. WO2013076666 A1.

    Google Scholar 

  • Yang, D., Biragyn, A., Kwak, L.W., and Oppenheim, J.J. 2002. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23, 291–266.

    Article  CAS  PubMed  Google Scholar 

  • Yasin, B., Wang, W., Pang, M., Cheshenko, N., Hong, T., Waring, A.J., Herold, B.C., Wagar, E.A., and Lehrer, R.I. 2004. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol. 78, 5147–5156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeaman, M.R. and Yount, N.Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27–55.

    Article  CAS  PubMed  Google Scholar 

  • Yount, N.Y. and Yeaman, M.R. 2012. Emerging themes and therapeutic prospects for anti-infective peptides. Annu. Rev. Pharmacol. Toxicol. 52, 337–360.

    Article  CAS  PubMed  Google Scholar 

  • Zaiou, M. 2007. Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J. Mol. Med. (Berl) 85, 317–329.

    Article  CAS  Google Scholar 

  • Zasloff, M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84, 5449–5453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zasloff, M., Martin, B., and Chen, H.C. 1988. Antimicrobial activity of synthetic magainin peptides and several analogues. Proc. Natl. Acad. Sci. USA 85, 910–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L. and Carmichael, R. 2013. Short antimicrobial lipopeptides. WO2013142088 A1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoonkyung Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, HK., Kim, C., Seo, C.H. et al. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol. 55, 1–12 (2017). https://doi.org/10.1007/s12275-017-6452-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6452-1

Keywords

Navigation