Skip to main content
Log in

Antibacterial potential of a small peptide from Bacillus sp. RPT-0001 and its capping for green synthesis of silver nanoparticles

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Infirmity and death from diseases caused by unsafe food are a continual hazard to communal health safety and socio-economic growth throughout the world. Chemical preservatives are associated with health hazards and toxicity issues. In the study reported here, 200 soil isolates from Western Himalayan region in India were screened for potential antibacterial activity against food-borne pathogens. This study led to the isolation of a bacterial strain belonging to the Genus Bacillus and was designated as RPT-0001. The associated antibacterial activity was sensitive to pronase E treatment. Bioassay-guided fractionation using reverse phase high performance liquid chromatography (RP-HPLC) led to isolation of the antibacterial peptide designated as RPT-0001. The molecular weight of RPT-0001 was determined by electro-spray ionization mass spectroscopy (ESI-MS) as 276.9 Da. RPT-0001 was inhibitory to both Gram-negative and Grampositive food-borne bacteria tested. The characteristics of RPT-0001 do not match with that of any other known antibacterial peptides produced by Bacillus sp. or related genera. Purified RPT-0001 was successfully used in synthesis of silver nanoparticles effective against food-borne pathogenic bacteria. The antibacterial peptide and silver nanoparticles synthesized utilizing it as a capping and reducing agent hold promising potential in food preservation, in packaging material and as a therapeutic agent in the treatment of foodborne infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abriouel, H., Franz, C.M., Omar, N.B., and Gálvez, A. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35, 201–232.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, A., Rönner, U., and Granum, P.E. 1995. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28, 145–155.

    Article  CAS  PubMed  Google Scholar 

  • Angulo, F.J., Nargund, V.N., and Chiller, T.C. 2004. Evidence of an association between use of antimicrobial agents in food animals and antimicrobial resistance among bacteria isolated from humans and the human health consequences of such resistance. J. Vet. Med. B Infect. Dis. Vet. Public Health 51, 374–379.

    Article  CAS  PubMed  Google Scholar 

  • Baruzzi, F., Quintieri, L., Morea, M., and Caputo, L. 2011. Antimicrobial compounds produced by Bacillus spp. and applications in food. Science against microbial pathogens: communicating current research and technological advances 2, 1102–1111.

    Google Scholar 

  • Bottone, E.J. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23, 382–398.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaloupka, K., Malam, Y., and Seifalian, A.M. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 28, 580–588.

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard. 8th ed, M07-A8. CLSI, Wayne, PA, USA.

  • Debabov, V., Voeikova, T., Shebanova, A., Shaitan, K., Emel’yanova, L., Novikova, L., and Kirpichnikov, M. 2013. Bacterial synthesis of silver sulfide nanoparticles. Nanotechnologies in Russia 8, 269–276.

    Article  Google Scholar 

  • Duncan, T.V. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Gálvez, A., López, R.L., Abriouel, H., Valdivia, E., and Omar, N.B. 2008. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 28, 125–152.

    Article  PubMed  Google Scholar 

  • Glynn, M.K., Bopp, C., Dewitt, W., Dabney, P., Mokhtar, M., and Angulo, F.J. 1998. Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States. N. Engl. J. Med. 338, 1333–1339.

    Article  CAS  PubMed  Google Scholar 

  • Gurtler, J.B., Kornacki, J.L., and Beuchat, L.R. 2005. Enterobacter sakazakii: A coliform of increased concern to infant health. Int. J. Food Microbiol. 104, 1–34.

    Article  PubMed  Google Scholar 

  • Hebbalalu, D., Lalley, J., Nadagouda, M.N., and Varma, R.S. 2013. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain. Chem. Eng. 1, 703–712.

    CAS  Google Scholar 

  • Hyeon, J.Y., Chung, G.T., Bing, S.H., Kwon, K.S., Lee, H.H., Kim, S.J., Jeon, S.E., Kang, Y.H., and Kim, J. 2013. A foodborne outbreak of Staphylococcus aureus associated with fried chicken in Republic of Korea. J. Microbiol. Biotechnol. 23, 85–87.

    Article  CAS  PubMed  Google Scholar 

  • Kawulka, K.E., Sprules, T., Diaper, C.M., Whittal, R.M., McKay, R.T., Mercier, P., Zuber, P., and Vederas, J.C. 2004. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to carbon cross-links: formation and reduction of thio-amino acid derivatives. Biochemistry 43, 3385–3395.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Marshall, M.R., and Wei, C. 1995. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agr. Food Chem. 43, 2839–2845.

    Article  CAS  Google Scholar 

  • Lai, K.K.E.W. 2001. Enterobacter sakazakii infections among neonates, infants, children, and adults: case reports and a review of the literature. Medicine 80, 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Le Marrec, C., Hyronimus, B., Bressollier, P., Verneuil, B., and Urdaci, M.C. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Appl. Environ. Microbiol. 66, 5213–5220.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, H.J. 2011. Review: Lantibiotics, Class I bacteriocins from the genus Bacillus. J. Microbiol. Biotechnol. 21, 229–235.

    CAS  PubMed  Google Scholar 

  • Ling, L.L., Schneider, T., Peoples, A.J., Spoering, A.L., Engels, I., Conlon, B.P., Mueller, A., Schäberle, T.F., Hughes, D.E., Epstein, S., et al. 2015. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459.

    Article  CAS  PubMed  Google Scholar 

  • Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Gnanajobitha, G., Vanaja, M., and Annadurai, G. 2013. Bacterial synthesis of silver nanoparticles by using optimized biomass growth of Bacillus sp. Nanosci. Nanotechnol. 3, 26–32.

    Google Scholar 

  • Mathur, R., Oh, H., Zhang, D., Park, S.G., Seo, J., Koblansky, A., Hayden, M.S., and Ghosh, S. 2012. A mouse model of Salmonella typhi infection. Cell 151, 590–602.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohammed Fayaz, A., Balaji, K., Girilal, M., Kalaichelvan, P.T., and Venkatesan, R. 2009. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J. Agric. Food Chem. 57, 6246–6252.

    Article  CAS  PubMed  Google Scholar 

  • Nandy, S., Dutta, S., Ghosh, S., Ganai, A., Rajahamsan, J., Theodore, R.B.J., and Sheikh, N.K. 2011. Foodborne-associated Shigella sonnei, India, 2009 and 2010. Emerg. Infect. Dis. 17, 2072–2074.

    Article  PubMed Central  PubMed  Google Scholar 

  • Newell, D.G., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., Opsteegh, M., Langelaar, M., Threfall, J., and Scheutz, F. 2010. Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139, S3–15.

    Article  Google Scholar 

  • Nicholson, W.L. 2002. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59, 410–416.

    Article  CAS  PubMed  Google Scholar 

  • Nygren, B.L., Schilling, K.A., Blanton, E.M., Silk, B.J., Cole, D.J., and Mintz, E.D. 2013. Foodborne outbreaks of shigellosis in the USA, 1998–2008. Epidemiol. Infect. 141, 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Patil, S.D., Sharma, R., Srivastava, S., Navani, N.K., and Pathania, R. 2013. Downregulation of yidC in Escherichia coli by antisense RNA expression results in sensitization to antibacterial essential oils eugenol and carvacrol. PLoS One 8, e57370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paulkumar, K., Rajeshkumar, S., Gnanajobitha, G., Vanaja, M., Malarkodi, C., and Annadurai, G. 2013. Eco-friendly synthesis of silver chloride nanoparticles using Klebsiella planticola (MTCC 2277). Int. J. Green Chem. Bioprocess 3, 12–16.

    Google Scholar 

  • Perreten, V., Schwarz, F., Cresta, L., Boeglin, M., Dasen, G., and Teuber, M. 1997. Antibiotic resistance spread in food. Nature 389, 801–802.

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan, R., O’Mullane, A.P., Parikh, R.Y., Smooker, P.M., Bhargava, S.K., and Bansal, V. 2010. Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27, 714–719.

    Article  PubMed  Google Scholar 

  • Renier, S., Hébraud, M., and Desvaux, M. 2011. Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ. Microbiol. 13, 835–850.

    Article  CAS  PubMed  Google Scholar 

  • Ruden, S., Hilpert, K., Berditsch, M., Wadhwani, P., and Ulrich, A.S. 2009. Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob. Agents Chemother. 53, 3538–3540.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakoulas, G., Nam, S.J., Loesgen, S., Fenical, W., Jensen, P.R., Nizet, V., and Hensler, M. 2012. Novel bacterial metabolite merochlorin A demonstrates in vitro activity against multi-drug resistant methicillin-resistant Staphylococcus aureus. PLoS One 7, e29439.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Samadi, N., Golkaran, D., Eslamifar, A., Jamalifar, H., Fazeli, M.R., and Mohseni, F.A. 2009. Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J. Biomed. Nanotechnol. 5, 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Schillinger, U. and Lücke, F.K. 1989. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55, 1901–1906.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma, V.K., Yngard, R.A., and Lin, Y. 2009. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83–96.

    Article  CAS  PubMed  Google Scholar 

  • Sharp, R., Scawen, M., and Atkinson, T. 1989. Bacillus. Fermentation and downstream processing of Bacillus. Biotechnology Handbook, Vol. 2, pp. 255–292, Springer, USA.

    Google Scholar 

  • Silver, L.L. and Bostian, K.A. 1993. Discovery and development of new antibiotics: the problem of antibiotic resistance. Antimicrob. Agents Chemother. 37, 377–383.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56, 845–857.

    Article  CAS  PubMed  Google Scholar 

  • Tagg, J.R., Dajani, A.S., and Wannamaker, L.W. 1976. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 40, 722–756.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teo, A.Y.L. and Tan, H.M. 2005. Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. Appl. Environ. Microbiol. 71, 4185–4190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teuber, M. 1999. Spread of antibiotic resistance with food-borne pathogens. Cell. Mol. Life Sci. 56, 755–763.

    Article  CAS  PubMed  Google Scholar 

  • Threlfall, E.J., Ward, L.R., Frost, J.A., and Willshaw, G.A. 2000. The emergence and spread of antibiotic resistance in foodborne bacteria. Int. J. Food Microbiol. 62, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Woc-Colburn, L. and Bobak, D.A. 2009. The expanding spectrum of disease due to salmonella: an international perspective. Curr. Infect. Dis. Rep. 11, 120–124.

    Article  PubMed  Google Scholar 

  • Zheng, G. and Slavik, M.F. 1999. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett. Appl. Microbiol. 28, 363–367.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Pathania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.D., Sharma, R., Bhattacharyya, T. et al. Antibacterial potential of a small peptide from Bacillus sp. RPT-0001 and its capping for green synthesis of silver nanoparticles. J Microbiol. 53, 643–652 (2015). https://doi.org/10.1007/s12275-015-4686-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-4686-3

Keywords

Navigation