Skip to main content
Log in

Dominant genera of cyanobacteria in Lake Taihu and their relationships with environmental factors

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cyanobacterial blooms in freshwaters have become one of the most widespread of environmental problems and threaten water resources worldwide. Previous studies on cyanobacteria in Lake Taihu often collected samples from one site (like Meiliang Bay or Zhushan Bay) and focused on the variation in patterns or abundance of Microcystis during the blooming season. However, the distribution of cyanobacteria in Lake Taihu shows differing pattern in various seasons. In this study, water samples were collected monthly for one year at five sites in Lake Taihu with different trophic status and a physicochemical analysis and denaturing gradient gel electrophoresis (DGGE) were conducted. DGGE fingerprint analysis showed that Microcystis (7/35 bands) and Synechococcus (12/35 bands) were the two most dominant genera present during the study period at all five sites. Cyanobium (3/35 bands) was the third most common genus which has seldom been previously reported in Lake Taihu. Redundancy analysis (RDA) indicated that the cyanobacterial community structure was significantly correlated with NO3 --N, CODMn, and NH4 +-N in the winter and spring, whereas it was correlated with water temperature in the summer and autumn. Limiting the nutrient input (especially of N and C loading) in Lake Taihu would be a key factor in controlling the growth of different genera of cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akcaalan, R., Young, F.M., Metcalf, J.S., Morrison, L.F., Albay, M., and Codd, G.A. 2006. Microcystin analysis in single filaments of Planktothrix spp. in laboratory cultures and environmental blooms. Water Res. 40, 1583–1590.

    Article  CAS  PubMed  Google Scholar 

  • Alquezar, R. and Anastasi, A. 2013. The use of the cyanobacteria, Cyanobium sp., as a suitable organism for toxicity testing by fow cytometry. Bull. Environ. Contam. Toxicol. 90, 684–690.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Y., Kong, F., Shi, L., and Yu, Y. 2012. Spatial heterogeneity of cyanobacterial communities and genetic variation of Microcystis populations within large, shallow eutrophic lakes (Lake Taihu and Lake Chaohu, China). J. Environ. Sci. (China) 24, 1832–1842.

    Article  CAS  Google Scholar 

  • Carmichael, W.W. 1992. Cyanobacteria secondary metabolites-the cyanotoxins. J. Appl. Bacteriol. 72, 445–459.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Qin, B., Teubner, K., and Dokulil, M.T. 2003. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J. Plankton Res. 25, 445–453.

    Article  Google Scholar 

  • de Figueiredo, D.R.D., Azeiteiro, U.M., Esteves, S.M., Gonçalves, F.J., and Pereira, M.J. 2004. Microcystin-producing blooms-a serious global public health issue. Ecotoxicol. Environ. Saf. 59, 151–163.

    Article  PubMed  Google Scholar 

  • Deng, J., Qin, B., Paerl, H.W., Zhang, Y., Ma, J., and Chen, Y. 2014. Earlier and warmer springs increase cyanobacterial (Microcystis spp.) blooms in subtropical Lake Taihu, China. Freshwater Biol. 59, 1076–1085.

    Article  Google Scholar 

  • Dokulil, M.T. and Teubner, K. 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438, 1–12.

    Article  CAS  Google Scholar 

  • Downing, J.A., Watson, S.B., and Mccauley, E. 2001. Predicting Cyanobacteria dominance in lakes. Can. J. Fish. Aquat. Sci. 58, 1905–1908.

    Article  Google Scholar 

  • Duan, H., Ma, R., Xu, X., Kong, F., Zhang, S., Kong, W., Hao, J., and Shang, L. 2009. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ. Sci. Technol. 43, 3522–3528.

    Article  CAS  PubMed  Google Scholar 

  • Frazão, B., Martins, R., and Vasconcelos, V. 2010. Are known cyanotoxins involved in the toxicity of picoplanktonic and filamentous North Atlantic marine cyanobacteria? Mar. Drugs 8, 1908–1919.

    Article  PubMed  PubMed Central  Google Scholar 

  • French, T.D. and Petticrew, E.L. 2007. Chlorophyll-a seasonality in four shallow eutrophic lakes (northern British Columbia, Canada) and the critical roles of internal phosphorus loading and temperature. Hydrobiologia 575, 285–299.

    Article  CAS  Google Scholar 

  • Guo, L. 2007. Doing battle with the green monster of Taihu Lake. Science 317, 1166.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Z., Liu, Y., and Li, D. 2004. Physiological and biochemical analyses of microcystin-RR toxicity to the cyanobacterium Synechococcus elongatus. Environ. Toxicol. 19, 571–577.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Chen, W., and Cai, Q. 1999. Survey, observation and analysis of lake ecology, pp. 777–781.Standards Press of China, Beijing, China (in Chinese).

    Google Scholar 

  • Islam, M.N., Kitazawa, D., Hamill, T., and Park, H.D. 2013. Modeling mitigation strategies for toxic cyanobacteria blooms in shallow and eutrophic Lake Kasumigaura, Japan. Mitig. Adapt. Strateg. Glob. Change 18, 449–470.

    Article  Google Scholar 

  • Jezberová, J. and Komarková, J. 2007. Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ. Microbiol. 9, 1858–1862.

    Article  PubMed  Google Scholar 

  • Joung, S.H., Oh, H.M., Ko, S.R., and Ahn, C.Y. 2011. Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae 10, 188–193.

    Article  Google Scholar 

  • Kardinaal, W.E.A., Janse, I., Agterveld, K.V., Meima, M., Snoek, J., Mur, L.R., Huisman, J., Zwart, G., and Visser, P.M. 2007. Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquat. Microb. Ecol. 48, 1–12.

    Article  Google Scholar 

  • Kim, S.G., Rhee, S.K., Ahn, C.Y., Ko, S.R., Choi, G.G., Bae, J.W., Park, Y.H., and Oh, H.M. 2006. Determination of cyanobacterial diversity during algal blooms in Daechung Reservoir, Korea, on the basis of cpcBA intergenic spacer region analysis. Appl. Environ. Microbiol. 72, 3252–3258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolmonen, E., Sivonen, K., Rapala, J., and Haukka, K. 2004. Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquat. Microb. Ecol. 36, 201–211.

    Article  Google Scholar 

  • Krienitz, L., Ballot, A., Wiegand, C.K., Codd, G.A., and Pflugmacher, S. 2002. Cyanotoxin-producing bloom of Anabaena flos-aquae, Anabaena discoidea and Microcystis aeruginosa (Cyanobacteria) in Nyanza Gulf of Lake Victoria, Kenya. J. Appl. Bot. 76, 179–183.

    Google Scholar 

  • Leps, J. and Smilauer, P. 2003. Multivariate analysis of eological data using CANOCO, pp. 43–75. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Li, D., Kong, F., Yu, Y., Yang, Z., and Shi, X. 2011. The community structure and abundance of microcystin-producing cyanobacteria in surface sediment of Lake Taihu in winter. Acta Ecol. Sin. 31, 6551–6560.

    CAS  Google Scholar 

  • Mainston, C.P. and Parr, W. 2002. Phosphorus in rivers-ecology and management. Sci. Total Environ. 282-283, 25–47.

    Article  PubMed  Google Scholar 

  • Miles, C.O., Sandvik, M., Nonga, H.E., Rundberget, T., Wilkins, A.L., Rise, F., and Ballot, A. 2013. Identification of microcystins in a Lake Victoria cyanobacterial bloom using LC-MS with thiol derivatization. Toxicon 70, 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muyzer, G. and Smalla, K. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73, 127–141.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, S.I., Murabe, A., Tsujimura, S., Hayakawa, K., Nakajima, T., Kumagai, M., Jiao, C.M., and Kawabata, Z. 2003. Dominance of Microcystis with special reference to carbon availability in lake water. Microb. Environ. 18, 38–42.

    Article  Google Scholar 

  • Nübel, U., GarciaPichel, F., and Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332.

    PubMed  PubMed Central  Google Scholar 

  • Oberholster, P.J., Myburgh, J.G., Govender, D., Bengis, R., and Botha, A.M. 2009. Identification of toxigenic Microcystis strains after incidents of wild animal mortalities in the Kruger National Park, South Africa. Ecotoxicol. Environ. Saf. 72, 1177–1182.

    Article  CAS  PubMed  Google Scholar 

  • Paerl, H.W., Fulton, R.S., Moisander, P.H., and Dyble, J. 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1, 76–113.

    Article  CAS  Google Scholar 

  • Postius, C. and Ernst, A. 1999. Mechanisms of dominance: coexistence of picocyanobacterial genotypes in a freshwater ecosystem. Arch. Microbiol. 172, 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Qin, B., Xu, P., Wu, Q., Luo, L., and Zhang, Y. 2007. Environmental issues of Lake Taihu, China. Hydrobiologia 581, 3–14.

    Article  CAS  Google Scholar 

  • Qin, B., Zhu, G., Gao, G., Zhang, Y., Li, W., Paerl, H.W., and Carmichael, W.W. 2010. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ. Manage. 45, 105–112.

    Article  PubMed  Google Scholar 

  • Rantala, A., Pirjo, R.W., Christina, L., Liisa, L., Jukka, R., Joanna, M.B., and Kaarina, S. 2006. Detection of microcystin-producing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Appl. Environ. Microbiol. 72, 6101–6110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven, J.A. 1998. The twelfth tansley lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. 12, 503–513.

    Article  Google Scholar 

  • Rinta-Kanto, J.M., Ouellette, A.J.A., Boyer, G.L., Twiss, M.R., Bridgeman, T.B., and Wilhelm, S.W. 2005. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 39, 4198–4205.

    Article  CAS  PubMed  Google Scholar 

  • Silva, E.I.L. 2003. Emergence of Microcystis bloom in an urban water body, Kandy lake, Sri Lanka. Curr. Sci. 85, 723–725.

    Google Scholar 

  • Sivonen, K. and Jones, G. 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, pp. 12–24. In Chorus, I. and Bartram, J. (eds.), E and FN Spon, for World Health Organization, Routledge, London, UK.

    Google Scholar 

  • Smith, J.L., Boyer, G.L., and Zimba, P.V. 2008. A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280, 5–20.

    Article  CAS  Google Scholar 

  • Song, L., Wei, C., Liang, P., Wan, N., Gan, N., and Zhang, X. 2007. Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res. 41, 2853–2864.

    Article  CAS  PubMed  Google Scholar 

  • Sotero-Santos, R.B., Carvalho, E.G., and Rocha, O. 2008. Occurrence and toxicity of an Anabaena bloom in a tropical reservoir (Southeast Brazil). Harmful Algae 7, 590–598.

    Article  CAS  Google Scholar 

  • Stockner, J.G. and Antia, N.J. 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43, 2472–2503.

    Article  Google Scholar 

  • Verspagen, J.M.H., Snelder, E.O.F.M., Visser, P.M., Jef, H., Mur, L.R., and Ibelings, B.W. 2004. Recruitment of benthic Microcystis (Cyanophyceae) to the water column: internal buoyancy changes or resuspension? J. Phycol. 40, 260–270.

    Article  Google Scholar 

  • Verspagen, J.M.H., Snelder, E.O.F.M., Visser, P.M., Jöhnk, K.D., Ibelings, B.W., Mur, L.R., and Huisman, J. 2005. Benthic-pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis. Freshwater Biol. 50, 854–867.

    Article  Google Scholar 

  • Visser, P.M., Ibelings, B.W., Mur, L.R., and Walsby, A.E. 2005. Aquatic Ecology Series, Vol. 3, pp. 109–142. Harmful Cyanobacteria. The ecophysiology of the harmful cyanobacterium Microcystis. Springer Netherlands.

    Article  Google Scholar 

  • Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments. Limnol. Oceanogr. 39, 1985–1992.

    Article  CAS  Google Scholar 

  • Wynne, T.T., Stumpf, R.P., Tomlinson, M.C., and Dyble, J. 2010. Characterizing a cyanobacterial bloom in Western Lake Erie using satellite imagery and meteorological data. Limnol. Oceanogr. 55, 2025–2036.

    Article  Google Scholar 

  • Xu, H., Paerl, H.W., Qin, B., Zhu, G., and Gao, G. 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 55, 420–432.

    Article  CAS  Google Scholar 

  • Yang, X., Wu, X., Hao, H., and He, Z. 2008. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B. 9, 197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, S. and Xue, B. 2010. Nutrients and heavy metals in multi-cores from Zhushan Bay at Taihu Lake, the largest shallow lake in the Yangtze Delta, China. Quatern. Int. 226, 23–28.

    Article  Google Scholar 

  • Ye, W., Liu, X., Tan, J., Li, D., and Yang, H. 2009. Diversity and dynamics of microcystin-producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae 8, 637–644.

    Article  CAS  Google Scholar 

  • Ye, C., Shen, Z., Tao, Z., Fan, M., Lei, Y., and Zhang, J. 2011a. Longterm joint effect of nutrients and temperature increase on algal growth in Lake Taihu, China. J. Environ. Sci. (China) 23, 222–227.

    Article  CAS  Google Scholar 

  • Ye, W., Tan, J., Liu, X., Lin, S., Pan, J., Li, D., and Yang, H. 2011b. Temporal variability of cyanobacterial populations in the water and sediment samples of Lake Taihu as determined by DGGE and real-time PCR. Harmful Algae 10, 472–479.

    Article  CAS  Google Scholar 

  • Yuan, L., Zhang, M., and Wang, R. 2005. The temporal and spation variation of the cyanobacteria which caused the water bloom in the Dianchi Lake, Kunming, China. J. Yunnan Univ. Nat. Sci. Ed. 27, 272–276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Liu, S., Wu, W. et al. Dominant genera of cyanobacteria in Lake Taihu and their relationships with environmental factors. J Microbiol. 54, 468–476 (2016). https://doi.org/10.1007/s12275-016-6037-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6037-4

Keywords

Navigation