Skip to main content
Log in

The Use of the Cyanobacteria, Cyanobium sp., as a Suitable Organism for Toxicity Testing by Flow Cytometry

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Cyanobacteria are commonly found in a number of temperate and tropical bioregions, and provide important roles in fuelling many nutrient poor freshwater and marine ecosystems. Although cyanobacteria commonly occur in these environments, little is known about the use of cyanobacteria as suitable organisms for toxicity studies. Here, we propose the use of the unicellular cyanobacteria Cyanobium sp., as a potential species for tropical toxicity testing using flow cytometry. Cyanobium sp. was isolated from a composite sample of sea water in Halifax Bay, North Queensland, Australia. After careful isolation, cleaning and purification, Cyanobium sp. was used to determine the toxicity of copper, cobalt, and nickel at pH 8, and ammonia at pH 7 and 8. EC10/50 values were calculated using growth inhibition data determined via flow cytometry, which was found to provide rapid, accurate results, with the ability to define multiple endpoints. Cyanobium sp. was particularly sensitive to copper, cobalt and nickel, however, thrived at elevated concentrations of ammonia, irrespective of pH value. The results indicate that Cyanobium sp. is a useful test organism for tropical marine metal toxicity studies, however, is unsuitable for nutrient studies, particularly ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ANZECC/ARMCANZ (2000) National Water Quality Guidelines. In: Proceedings of Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand, Canberra

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. Port City Press, MD

    Google Scholar 

  • Araújo CVM, Diz FR, Lubián LM, Blasco J, Moreno-Garrido I (2010) Sensitivity of Cylindrotheca closterium to copper: influence of three test endpoints and two test methods. Sci Total Environ 408:3696–3703

    Article  Google Scholar 

  • Baptista MS, Vasconcelos MT (2006) Cyanobacteria metal interactions: requirements, toxicity, and ecological implications. Crit Rev Microbiol 32:127–137

    Article  CAS  Google Scholar 

  • Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  Google Scholar 

  • Cembella AD, Lewis NI, Quilliam MA (1999) Spirolide composition of micro-extracted pooled cells isolated from natural plankton assemblages and from cultures of the dinoflagellate Alexandrium ostenfeldii. Nat Toxins 7:197–206

    Article  CAS  Google Scholar 

  • Chapman PM, McDonald BG, Kickham PE, McKinnon S (2006) Global geographic differences in marine metals toxicity. Mar Pollut Bull 52:1081–1084

    Article  CAS  Google Scholar 

  • Dave G, Xiu R (1991) Toxicity of mercury, copper, nickel, lead and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch Environ Contam Toxicol 21:126–134

    Article  CAS  Google Scholar 

  • Debelius B, Forja JM, DelValls Á, Lubián LM (2009) Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol Environ Saf 72:1503–1513

    Article  CAS  Google Scholar 

  • Diamond JM, Winchester EL, Muckler DG, Rasnake WJ, Fanelli JK, Gruber D (1992) Toxicity of cobalt to freshwater indicator species as a function of water hardness. Aquat Toxicol 22:163–180

    Article  CAS  Google Scholar 

  • Eklund BT, Kautsky L (2003) Review on toxicity testing with marine macroalgae and the need for method standardization-exemplified with copper and phenol. Mar Pollut Bull 46:171–181

    Article  CAS  Google Scholar 

  • Emerson K, Russo RC, Lund RE (1975) Aqueous ammonia equilibrium calculations: effects of pH and temperature. J Fish Res Can 32:2379–2383

    Article  CAS  Google Scholar 

  • Fairchild JF, Allert AL, Sappington LC, Waddell B (2005) Chronic toxicity of un-ionized ammonia to early life-stages of endangered Colorado Pikeminnow (Ptychocheilus lucius) and Razorback Sucker (Xyrauchen texanus) compared to the surrogate Fathead Minnow (Pimephales promelas). Arch Environ Contamin Toxicol 49:378–384

    Article  CAS  Google Scholar 

  • Florence TM, Stauber JL, Ahsanullah M (1994) Toxicity of nickel ores to marine organisms. Sci Total Environ 148:139–155

    Article  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP (2001) Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters. Environ Toxicol Chem 20:160–170

    Article  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP (2004) Development of multispecies algal bioassays using flow cytometry. Environ Toxicol Chem 23(6):1452–1462

    Article  CAS  Google Scholar 

  • Franqueira D, Orosa M, Torres E, Herrero C, Cid A (2000) Potential use of flow cytometry in toxicity studies with microalgae. Sci Total Environ 247:119–126

    Article  CAS  Google Scholar 

  • Frazão B, Martins R, Vasconcelos V (2010) Are known Cyanotoxins involved in the toxicity of picoplanktonic and filamentous North Atlantic Marine cyanobacteria? Mar Drug 8:1908–1919

    Article  Google Scholar 

  • Grosell M, McDonald MD, Wood CM, Walsh PJ (2004) Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta). Aquat Toxicol 68:249–262

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. 1. Cyclotella naan HUSTEDT and Detonula confervacea (CLEVE) GRAN. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Hall LW Jr, Anderson RD, Kilian JV, Lewes BL, Traexler K (1997) Acute and chronic toxicity of copper to the estuarine copepod Eurytemora affinis: influence of organic complexation and speciation. Chemosphere 35:1567–1597

    Article  CAS  Google Scholar 

  • Heng L, Jusoh K, Ling C, Idris M (2004) Toxicity of single and combinations of lead and cadmium to the cyanobacteria Anabaena flos-aquae. Bull Environ Contamin Toxicol 72:373–379

    Article  CAS  Google Scholar 

  • Horvatić J, Peršić V (2007) The effect of Ni2 + , Co2 + , Zn2 + , Cd2 + and Hg2 + ; on the growth rate of marine diatom Phaeodactylum tricornutum Bohlin: microplate growth inhibition test. Bull Environ Contamin Toxicol 79:494–498

    Article  Google Scholar 

  • Jitka Jezberová JK (2007) Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ Microbiol 9:1858–1862

    Article  Google Scholar 

  • Komárek J, Komárková - Legnerová J (2002) Contribution to the knowledge of planktic cyanoprokaryotes from central Mexico. Preslia 74:207–233

    Google Scholar 

  • Kr M, Kumlu M, Eroldogan OT (2004) Effects of temperature on acute toxicity of ammonia to Penaeus semisulcatus juveniles. Aquaculture 241:479–489

    Article  Google Scholar 

  • Kwok KW et al (2007) Comparison of tropical and temperate freshwater animal species’ acute sensitivities to chemicals: implications for deriving safe extrapolation factors. Integr Environ Assess Manag 3:49–67

    Article  CAS  Google Scholar 

  • Lepesteur M, Martin JM, Fleury A (1993) A comparative study of different preservation methods for phytoplankton cell analysis by flow cytometry. Mar Ecol Prog Ser 93:55–63

    Article  Google Scholar 

  • Levy JL, Stauber JL, Wakelin SA, Jolley DF (2011) The effect of field-collected biofilms on the toxicity of copper to a marine microalga (Tetraselmis sp.) in laboratory bioassays. Mar Freshw Res 62:1362–1372

    Article  CAS  Google Scholar 

  • Lewis M (1978) Acute toxicity of copper, zinc and manganese in single and mixed salt solutions to juvenile longfin dace, Agosia chrysogaster. J Fish Biol 13:695–700

    Article  CAS  Google Scholar 

  • Liao CM, Lin MC (2001) Acute toxicity modeling of rainbow trout and silver sea bream exposed to waterborne metals. Environ Toxicol 16:349–360

    Article  CAS  Google Scholar 

  • Lin MC (2009) Risk assessment on mixture toxicity of arsenic, zinc and copper intake from consumption of milkfish, chanos chanos (forssk), cultured using contaminated groundwater in southwest Taiwan. Bull Environ Contam Toxicol 83:125–129

    Article  CAS  Google Scholar 

  • Majmudar K, Burleson ML (2006) An evaluation of cobalt chloride as an O2-sensitive chemoreceptor stimulant in channel catfish. Comp Biochem and Physiol C 142:136–141

    Google Scholar 

  • Marr JCA et al (1998) Toxicity of cobalt and copper to rainbow trout: application of a mechanistic model for predicting survival. Aquat Toxicol 43:225–238

    Article  CAS  Google Scholar 

  • Mastin BJ, Rodgers JJH (2000) Toxicity and bioavailability of copper herbicides (clearigate, cutrine-plus, and copper sulfate) to freshwater animals. Arch Environ Contam Toxicol 39:0445–0451

    Article  CAS  Google Scholar 

  • Miao A-J, Wang W-X, Juneau P (2005) Comparison of Cd, Cu and Zn toxic effects on four marine phytoplankton by Pulse-Amplitude-Modulated fluorometry. Environ Toxicol Chem 24:2603–2611

    Article  CAS  Google Scholar 

  • OECD (1984) OECD Guidelines for testing of chemicals. effects on biotic systems. Method 201. Alga, growth inhibition test. Adopted June 7,1984

  • Padisák J, Krienitz L, Koschel R, Nedoma J (1997) Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. Eur J Phycol 32:403–416

    Google Scholar 

  • Prado R, García R, Rioboo C, Herrero C, Abalde J, Cid A (2009) Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat. Environ Int 35:240–247

    Article  CAS  Google Scholar 

  • Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L (2009) Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Saf 72:1170–1176

    Article  CAS  Google Scholar 

  • Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23

    Article  CAS  Google Scholar 

  • Ribalet F, Wichard T, Pohnert G, Ianora A, Miralto A, Casotti R (2007) Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry 68:2059–2067

    Article  CAS  Google Scholar 

  • Schubauer-Berigan MK, Monson PD, West CW, Ankley GT (1995) Influence of pH on the toxicity of ammonia to Chironomus tentans and Lumbriculus variegatus. Environ Toxicol Chem 14:713–717

    Article  CAS  Google Scholar 

  • Sharma RM, Panigrahi S, Azeez PA (1987) Effect of cobalt on the primary productivity of Spirulina platensis. Bull Environ Contamin Toxicol 39:716–720

    Article  CAS  Google Scholar 

  • Stauber JL, Franklin NM, Adams MS (2002) Applications of flow cytometry to ecotoxicity testing using microalgae. Trends Biotechnol 20:141–143

    Article  CAS  Google Scholar 

  • Thomas EL Jr, Michael IG (1997) Tropical ecotoxicology: status and needs. Environ Toxicol Chem 16:100–111

    Article  Google Scholar 

  • USEPA (1999) Update of ambient water quality criteria for ammonia. U.S. Environmental Protection Agency Office of Water report no. EPA-822-R-99-014

  • Ytreberg E, Karlsson J, Ndungu K, Hassellöv M, Breitbarth E, Eklund B (2011) Influence of salinity and organic matter on the toxicity of Cu to a brackish water and marine clone of the red macroalga Ceramium tenuicorne. Ecotoxicol Environ Safe 74:636–642

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CQUniversity Australia and a major resource industry for funding and infrastructure usage. We also wish to thank the Capricornia Centre for Mucosal Immunology at CQUniversity Australia, for allowing us to use their flow cytometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Alquezar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alquezar, R., Anastasi, A. The Use of the Cyanobacteria, Cyanobium sp., as a Suitable Organism for Toxicity Testing by Flow Cytometry. Bull Environ Contam Toxicol 90, 684–690 (2013). https://doi.org/10.1007/s00128-013-0977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-013-0977-8

Keywords

Navigation