Skip to main content
Log in

Hgc1-Cdc28–how much does a single protein kinase do in the regulation of hyphal development in Candida albicans?

  • Review
  • Biology of Human Fungal Pathogen
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The fungal human pathogen Candida albicans can cause invasive infection with high mortality rates. A key virulence factor is its ability to switch between three morphologies: yeast, pseudohyphae and hyphae. In contrast to the ovalshaped unicellular yeast cells, hyphae are highly elongated, tube-like, and multicellular. A long-standing question is what coordinates all the cellular machines to construct cells with distinct shapes. Hyphal-specific genes (HSGs) are thought to hold the answer. Among the numerous HSGs found, only UME6 and HGC1 are required for hyphal development. UME6 encodes a transcription factor that regulates many HSGs including HGC1. HGC1 encodes a G1 cyclin which partners with the Cdc28 cyclin-dependent kinase. Hgc1-Cdc28 simultaneously phosphorylates and regulates multiple substrates, thus controlling multiple cellular apparatuses for morphogenesis. This review is focused on major progresses made in the past decade on Hgc1’s roles and regulation in C. albicans hyphal development and other traits important for infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee, M., Uppuluri, P., Zhao, X.R., Carlisle, P.L., Vipulanandan, G., Villar, C.C., López-Ribot, J.L., and Kadosh, D. 2013. Expression of UME6, a key regulator of Candida albicans hyphal development, enhances biofilm formation via Hgc1- and Sun41-dependent mechanisms. Eukaryot. Cell 12, 224–232.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bassetti, M., Mikulska, M., and Viscoli, C. 2010. Bench-to-bedside review: therapeutic management of invasive candidiasis in the intensive care unit. Crit. Care 14, 244.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bassilana, M., Hopkins, J., and Arkowitz, R.A. 2005. Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth. Eukaryot. Cell 4, 588–603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bishop, A., Lane, R., Beniston, R., Chapa-y-Lazo, B., Smythe, C., and Sudbery, E. 2010. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J. 29, 2930–2942.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonhomme, J. and d’Enfert, C. 2013. Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Curr. Opin. Microbiol. 16, 398–403.

    Article  CAS  PubMed  Google Scholar 

  • Braun, B.R. and Johnson, A.D. 1997. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Braun, B.R., Kadosh, D., and Johnson, A.D. 2001. NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. EMBO J. 20, 4753–4761.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown, G.D., Denning, D.W., Gow, N.A.R., Stuart, M., Levitz, S.M., Netea, M.G., and White, T.C. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 1–9.

    Article  Google Scholar 

  • Bruno, V.M., Wang, Z., Marjani, S.L., Euskirchen, G.M., Martin, J., Sherlock, G., and Snyder, M. 2010. Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res. 20, 1451–1458.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buffo, J., Herman, M.A., and Soll, D.R. 1984. A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia 85, 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Lima, D. and Sudbery, P.E. 2014. In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Mol. Biol. Cell 25, 1097–1110.

    Article  PubMed Central  PubMed  Google Scholar 

  • Calderón-Noreña, D.M., González-Novo, A., Orellana-Muñoz, S., Gutiérrez-Escribano, P., Arnáiz-Pita, Y., Dueñas-Santero, E., Suárez, M.B., Bougnoux, M.E., Del Rey, F., Sherlock, G., et al. 2015. A single nucleotide polymorphism uncovers a novel function for the transcription factor Ace2 during Candida albicans hyphal development. PLoS Genet. 11, e1005152.

    Article  PubMed Central  PubMed  Google Scholar 

  • Carlisle, P.L. and Kadosh, D. 2010. Candida albicans Ume6, a filament- specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. Eukaryot. Cell 9, 1320–1328.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chao, C.C., Hsu, P.C., Jen, C.F., Chen, I.H., Wang, C.H., Chan, H.C., Tsai, P.W., Tung, K.C., Wang, C.H., Lan, C.Y., et al. 2010. Zebrafish as a model host for Candida albicans infection. Infect. Immun. 78, 2512–2521.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Court, H. and Sudbery, P.E. 2007. Regulation of Cdc42 GTPase activity in the formation of hyphae in Candida albicans. Mol. Biol. Cell 18, 265–281.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crampin, H., Finley, K., Gerami-Nejad, M., Court, H., Gale, C., Berman, J., and Sudbery, P. 2005. Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. J. Cell Sci. 118, 2935–2947.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville, S. 2004. Cdc42—the centre of polarity. J. Cell Sci. 117, 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  • Evangelista, M., Blundell, K., Longtine, M.S., Chow, C.J., Adames, N., Pringle, J.R., Peter, M., and Boone, C. 1997. Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122.

    Article  CAS  PubMed  Google Scholar 

  • Fung, K.Y., Dai, L., and Trimble, W.S. 2014. Cell and molecular biology of septins. Int. Rev. Cell Mol. Biol. 310, 289–339.

    Article  CAS  PubMed  Google Scholar 

  • González-Novo, A., Correa-Bordes, J., Labrador, L., Sánchez, M., Vázquez de Aldana, C.R., and Jiménez, J. 2008. Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth. Mol. Biol. Cell 19, 1509–1518.

    Article  PubMed Central  PubMed  Google Scholar 

  • Guan, G., Xie, J., Tao, L., Nobile, C.J., Sun, Y., Cao, C., Tong, Y., and Huang, G. 2013. Bcr1 plays a central role in the regulation of opaque cell filamentation in Candida albicans. Mol. Microbiol. 89, 732–750.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu, S.C., Hazuka, C.D., Roth, R., Foletti, D.L., Heuser, J., and Scheller, R.H. 1998. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111–1122.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Z.X., Wang, H., Wang, Y.M., and Wang, Y. 2014. Novel mechanism coupling cyclic AMP-protein kinase A signaling and Golgi trafficking via Gyp1 phosphorylation in polarized growth. Eukaryot. Cell 13, 1548–1556.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hutagalung, A.H. and Novick, P.J. 2011. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119–149.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inglis D.O., Arnaud, M.B., Binkley, J., Shah, P., Skrzypek, M.S., Wymore, F., Binkley, G., Miyasato, S.R., Simison, M., and Sherlock, G. 2012. The Candida Genome Database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. Nucleic Acids Res. 40(Database issue), D667–674.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson, A. 2005. The biology of mating in Candida albicans. Nat. Rev. Microbiol. 1, 106–116.

    Article  Google Scholar 

  • Kadosh, D. and Johnson, A.D. 2005. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol. Biol. Cell 16, 2903–2912.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klengel, T., Liang, W.J., Chaloupka, J., Ruoff, C., Schröppel, K., Naglik, J.R., Eckert, S.E., Mogensen, E.G., Haynes, K., Tuite, M.F., et al. 2005. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr. Biol. 15, 2021–2026.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knaus, M., Pelli-Gulli, M.P., van Drogen, F., Springer, S., Jaquenoud, M., and Peter, M. 2007. Phosphorylation of Bem2p and Bem3p may contribute to local activation of Cdc42p at bud emergence. EMBO J. 26, 4501–4513.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lew, D.J. and Reed, S. 1993. Morphogenesis in the yeast cell cycle, regulation by Cdc28 and cyclins. J. Cell Biol. 120, 1305–1320.

    Article  CAS  PubMed  Google Scholar 

  • Lew, D.J. and Reed, S.I. 1995. Cell cycle control of morphogenesis in budding yeast. Curr. Opin. Genet. Dev. 5, 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Li, C.R., Lee, R.T., Wang, Y.M., Zheng, X.D., and Wang, Y. 2007. Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. J. Cell Sci. 120, 1898–1907.

    Article  CAS  PubMed  Google Scholar 

  • Li, C.R., Wang, Y.M., De Zheng, X., Liang, H.Y., Tang, J.C., and Wang, Y. 2005. The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans. J. Cell Sci. 118, 2637–2648.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C.H., Kabrawala, S., Fox, E.P., Nobile, C.J., Johnson, A.D., and Bennett, R.J. 2013. Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans. PLoS Pathog. 9, e1003305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu, Y., Su, C., and Liu, H. 2014. Candida albicans hyphal initiation and elongation. Trends Microbiol. 22, 707–714.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu, Y., Su, C., Wang, A., and Liu, H. 2011. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol. 9, e1001105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mathé, L. and Van Dijck, P. 2013. Recent insights into Candida albicans biofilm resistance mechanisms. Curr. Genet. 59, 251–264.

    Article  PubMed Central  PubMed  Google Scholar 

  • Murad, A.M., d’Enfert, C., Gaillardin, C., Tournu, H., Tekaia, F., Talibi, D., Marechal, D., Marchais, V., Cottin, J., and Brown, A.J. 2001. Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol. Microbiol. 42, 981–993.

    Article  CAS  PubMed  Google Scholar 

  • Naglik, J.R., Challacombe, S.J., and Hube, B. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 400–428.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagy, G., Hennig, G.W., Petrenyi, K., Kovacs, L., Pocsi, I., Dombradi, V., and Banfalvi, G. 2014. Time-lapse video microscopy and image analysis of adherence and growth patterns of Candida albicans strains. Appl. Microbiol. Biotechnol. 98, 5185–5194.

    Article  CAS  PubMed  Google Scholar 

  • Nantel, A., Dignard, D., Bachewich, C., Harcus, D., Marcil, A., Bouin, A.P., Sensen, C.W., Hogues, H., van het Hoog, M., Gordon, P., et al. 2002. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell 13, 3452–3465.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nurse, P. 2002. Cyclin dependent kinases and cell cycle control (Nobel lecture). Chembiochem 3, 596–603.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz, D., Medkova, M., Walch-Solimena, C., and Novick, P. 2002. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J. Cell Biol. 157, 1005–1015.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park, H.O. and Bi, E. 2007. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol. Mol. Biol. Rev. 71, 48–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pulver, R., Heisel, T., Gonia, S., Robins, R., Norton, J., Haynes, P., and Gale, C.A. 2013. Rsr1 focuses Cdc42 activity at hyphal tips and promotes maintenance of hyphal development in Candida albicans. Eukaryot. Cell 12, 482–495.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramanan, N. and Wang, Y. 2000. A High-affinity iron permease essential for Candida albicans virulence. Science 288, 1062–1064.

    Article  CAS  PubMed  Google Scholar 

  • Schaekel, A., Desai, P.R., and Ernst, J.F. 2013. Morphogenesis-regulated localization of protein kinase A to genomic sites in Candida albicans. BMC Genomics 14, 842.

    Article  PubMed Central  PubMed  Google Scholar 

  • Si, H., Hernday, A.D., Hirakawa, M.P., Johnson, A.D., and Bennett, R.J. 2013. Candida albicans white and opaque cells undergo distinct programs of filamentous growth. PLoS Pathog. 9, e1003210.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simonetti, N., Strippoli, V., and Cassone, A. 1974. Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans. Nature 250, 344–346.

    Article  CAS  PubMed  Google Scholar 

  • Sinha, I., Wang, Y.M., Philp, R., Li, C.R., Yap, W.H., and Wang, Y. 2007. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Dev. Cell 13, 421–432.

    Article  CAS  PubMed  Google Scholar 

  • Sopko, R., Huang, D., Smith, J.C., Figeys, D., and Andrews, B.J. 2007. Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast. EMBO J. 26, 4487–4500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staab, J.F., Bradway, S.D., Fidel, P.L., and Sundstrom, P. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283, 1535–1538.

    Article  CAS  PubMed  Google Scholar 

  • Stoldt, V.R., Sonneborn, A., Leuker, C.E., and Ernst, J.F. 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16, 1982–1991.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sudbery, P.E. 2001. The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization. Mol. Microbiol. 41, 19–31.

    Article  CAS  PubMed  Google Scholar 

  • Sudbery, P.E. 2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9, 737–748.

    Article  CAS  PubMed  Google Scholar 

  • Sudbery, P., Gow, N., and Berman, J. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12, 317–324.

    Article  CAS  PubMed  Google Scholar 

  • Taschdjian, C.L., Burchall, J.J., and Kozinn, P.J. 1960. Rapid identification of Candida albicans by filamentation on serum and serum substitutes. AMA J. Dis. Child 99, 212–215.

    CAS  PubMed  Google Scholar 

  • Wang, Y. 2009. CDKs and the yeast-hyphal decision. Curr. Opin. Microbiol. 12, 644–649.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. 2013. Fungal adenylyl cyclase acts as a signal sensor and integrator and plays a central role in interaction with bacteria. PLoS Pathog. 9, e1003612.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, A., Lane, S., Tian, Z., Sharon, A., Hazan, I., and Liu, H. 2007. Temporal and spatial control of HGC1 expression results in Hgc1 localization to the apical cells of hyphae in Candida albicans. Eukaryot. Cell 6, 253–261.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, A., Raniga, P.P., Lane, S., Lu, Y., and Liu, H. 2009. Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes. Mol. Biol. Cell 29, 4406–4416.

    Article  CAS  Google Scholar 

  • Wang, Y. and Xu, X.L. 2008. Bacterial peptidoglycan-derived molecules activate Candida albicans hyphal growth. Commun. Integr. Biol. 1, 137–139.

    Article  PubMed Central  PubMed  Google Scholar 

  • Warenda, A.J. and Konopka, J.B. 2002. Septin function in Candida albicans morphogenesis. Mol. Biol. Cell 13, 2732–2746.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiss, E.L. 2012. Mitotic exit and separation of mother and daughter cells. Genetics 192, 1165–1202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whiteway, M. 2000. Transcriptional control of cell type and morphogenesis in Candida albicans. Curr. Opin. Microbiol. 3, 582–588.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D. and Hube, B. 2010. Hgc1 mediates dynamic Candida albicans-endothelium adhesion events during circulation. Eukaryot. Cell 9, 278–287.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu, X.L., Lee, R.T., Fang, H.M., Wang, Y.M., Li, R., Zou, H., Zhu, Y., and Wang, Y. 2008. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39.

    Article  CAS  PubMed  Google Scholar 

  • Xue, J., Tsang, C.W., Gai, W.P., Malladi, C.S., Trimble, W.S., Rostas, J.A., and Robinson, P.J. 2004. Septin 3 (G-septin) is a developmentally regulated phosphoprotein enriched in presynaptic nerve terminals. J. Neurochem. 91, 579–590.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, G.S., Wang, Y.M., and Wang, Y. 2012. Cdc28–Cln3 regulates actin-mediated endocytosis by targeting Sla1 in different modes of fungal growth. Mol. Biol. Cell 23, 3485–3497.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng, X.D., Lee, R.T., Wang, Y.M., Lin, Q.S., and Wang, Y. 2007. Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. EMBO J. 26, 3760–3769.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng, X., Wang, Y., and Wang, Y. 2004. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 23, 1845–1856.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. Hgc1-Cdc28–how much does a single protein kinase do in the regulation of hyphal development in Candida albicans?. J Microbiol. 54, 170–177 (2016). https://doi.org/10.1007/s12275-016-5550-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-5550-9

Keywords

Navigation